V.9. Abzählen am Baumdiagramm: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
 
<imagemap>
 
<imagemap>
 
Bild:Erklärbär.PNG‎|30px|left|
 
Bild:Erklärbär.PNG‎|30px|left|
rect 0 0 0 0 [[P-Seminar/Mathematik_2010-12|Hauptmenü]]
+
rect 0 0 0 0 [[P-Seminar/Mathematik_2010-12]]
default [[P-Seminar/Mathematik_2010-12|Hauptmenü]]
+
default [[P-Seminar/Mathematik_2010-12]]
 
desc none
 
desc none
 
</imagemap>
 
</imagemap>
Zeile 112: Zeile 112:
  
 
<div class="aussen"><div class="menutag">'''VI. Multiplikation und Division ganzer Zahlen'''</div>
 
<div class="aussen"><div class="menutag">'''VI. Multiplikation und Division ganzer Zahlen'''</div>
*[[P-Seminar/Mathematik_2010-12/VI.1._Multiplizieren|1. Multiplizieren]]
+
*[[P-Seminar/Mathematik 2010-12/VI.1. Multiplikation | 1. Multiplikation]]
*[[P-Seminar/Mathematik_2010-12/VI.2._Dividieren|2. Dividieren]]
+
*[[P-Seminar/Mathematik 2010-12/VI.2 Division | 2. Division]]
*[[P-Seminar/Mathematik_2010-12/VI.3._Rechengesetze_und_Rechenvorteile|3. Rechengesetze und Rechenvorteile]]
+
 
 
</div>
 
</div>
 
</div>
 
</div>
Zeile 161: Zeile 161:
 
<br><br><br><br>
 
<br><br><br><br>
  
 +
                     
 
</div>
 
</div>
  
</div>
 
  
 +
</div>
 
</div>
 
</div>
  

Version vom 23. Oktober 2013, 00:42 Uhr


 

V. Multiplikation und Division natürlicher Zahlen:  

1. Multiplizieren und Dividieren - 2. Rechnen mit Null und Eins - 3. Schriftliches Multiplizieren und Dividieren - 4. Verbindung der Grundrechenarten - 5. Rechengesetze und Rechenvorteile - 6. Potenzieren - 7. Faktorisieren von Zahlen - 8. Terme - 9. Abzählen am Baumdiagramm


Erklärung

Baumdiagramm

Ein Baumdiagramm ist eine Grafik zum herausfinden aller Möglichkeiten ( z.B. das aufstellen von 3 Schülern auf einem Foto.


Beispielaufgabe Baumdiagramm 


Baumdiagramm.png




Merke:

Die letzte Reihe/Spalte ist die maximale Anzahl.



  Aufgaben

Man will auf einem Foto 4 Personen unterschiedlich ordnen. Wie viele Möglichkeiten gibt es? (!48 ) ( 24) (! 12)

Herbert hat eine rote, eine blaue und zwei gelbe Ostereier in seinem Nest gefunden. Wie viele Möglichkeiten gibt es, drei von ihnen anzuordnen? (! 10) (! 8) ( 12)


 

Die Anzahl der verschiedenen Möglichkeiten 3 Schüler auf einem Bild anzuordnen ist 6 .




V. Multiplikation und Division natürlicher Zahlen:  

1. Multiplizieren und Dividieren - 2. Rechnen mit Null und Eins - 3. Schriftliches Multiplizieren und Dividieren - 4. Verbindung der Grundrechenarten - 5. Rechengesetze und Rechenvorteile - 6. Potenzieren - 7. Faktorisieren von Zahlen - 8. Terme - 9. Abzählen am Baumdiagramm
\Rightarrow Weiter zum nächsten Themengebiet