VIII.1. Flächeninhalte vergleichen und messen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
(17 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
<div class="menuebox"><div class="menue">
 +
<imagemap>
 +
Bild:Erklärbär.PNG‎|30px|left|
 +
rect 0 0 0 0 [[P-Seminar/Mathematik_2010-12]]
 +
default [[P-Seminar/Mathematik_2010-12]]
 +
desc none
 +
</imagemap>
 +
 +
<div class="aussen"><div class="menutag">[[P-Seminar/Mathematik_2010-12|Hauptmenü]]</div>
 +
;-----------------------------------------------------------------------------------
 +
<popup name="I.Natürliche Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''I.Natürliche Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/I.1._Zählen_und_Ordnen|Zählen und Ordnen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.2._Veranschaulichung_von_Zahlen|Veranschaulichung von Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.3._Das_Dezimalsystem|Das Dezimalsystem]]
 +
*[[P-Seminar/Mathematik_2010-12/I.4._Römische_Zahlen|Römische Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.5._Zahlenmengen|Zahlenmengen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.6._Runden|Runden]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="II. Addition und Subtraktion natürlicher Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''II. Addition und Subtraktion natürlicher Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/II.1._Addieren_und_Subtrahieren|1.Addieren und Subtrahieren]]
 +
*[[P-Seminar/Mathematik_2010-12/II.2._Rechengesetze_und_Rechenvorteile|2.Rechengesetze und Rechenvorteile]]
 +
*[[P-Seminar/Mathematik_2010-12/II.3._Terme|3.Terme]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="III. Die ganzen Zahlen; Addition und Subtraktion ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''III. Die ganzen Zahlen; Addition und Subtraktion'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/III.1._Negative_Zahlen|1.Negative Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/III.2._Vorzeichenschreibweise|2.Vorzeichenschreibweise]]
 +
*[[P-Seminar/Mathematik_2010-12/III.3._Anordnung_und_Betrag|3.Anordnung und Betrag]]
 +
*[[P-Seminar/Mathematik_2010-12/III.4._Addieren|4.Addieren]]
 +
*[[P-Seminar/Mathematik_2010-12/III.5._Subtrahieren|5.Subtrahieren]]
 +
*[[P-Seminar/Mathematik_2010-12/III.6._Rechnen_mit_Summen_und_Differenzen|6.Rechnen mit Summen und Differenzen]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="IV. Geometrische Grundbegriffe ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''IV. Geometrische Grundbegriffe'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/IV.1._Geometrische_Körper|1. Geometrische Körper]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.2._Geraden|2. Geraden]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.3._Abstände|3. Abstände]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.4._Parallelogramme_-_Umfang|4. Parallelogramme - Umfang]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.5._Kreise|5. Kreise]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.6._Winkel|6. Winkel]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.7._Achsensymmetrie|7. Achsensymmetrie]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.8._Netze_geometrischer_Körper|8. Netze geometrischer Körper]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.9._Schrägbilder|9. Schrägbilder]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="V. Multiplikation und Division natürlicher Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''V. Multiplikation und Division natürlicher Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/V.1._Multiplizieren_und_Dividieren|1. Multiplizieren und Dividieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.2._Rechnen_mit_Null_und_Eins|2. Rechnen mit Null und Eins]]
 +
*[[P-Seminar/Mathematik_2010-12/V.3._Schriftliches_Multiplizieren_und_Dividieren|3. Schriftliches Multiplizieren und Dividieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.4._Verbindung_der_Grundrechenarten|4. Verbindung der Grundrechenarten]]
 +
*[[P-Seminar/Mathematik_2010-12/V.5._Rechengesetze_und_Rechenvorteile|5. Rechengesetze und Rechenvorteile]]
 +
*[[P-Seminar/Mathematik_2010-12/V.6._Potenzieren|6. Potenzieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.7._Faktorisieren_von_Zahlen|7. Faktorisieren von Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/V.8._Terme|8. Terme]]
 +
*[[P-Seminar/Mathematik_2010-12/V.9._Abzählen_am_Baumdiagramm|9. Abzählen am Baumdiagramm]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VI. Multiplikation und Division ganzer Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VI. Multiplikation und Division ganzer Zahlen'''</div>
 +
*[[P-Seminar/Mathematik 2010-12/VI.1. Multiplikation | 1. Multiplikation]]
 +
*[[P-Seminar/Mathematik 2010-12/VI.2 Division | 2. Division]]
 +
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VII. Größen und ihre Einheiten ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VII. Größen und ihre Einheiten'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/VII.1._Messen|1. Messen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.2._Längen|2. Längen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.3._Rechnen_mit_Größen|3. Rechnen mit Größen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.4._Maßstab|4. Maßstab]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.5._Massen|5. Massen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.6._Geld|6. Geld]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.7._Zeit|7. Zeit]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VIII. Flächen und Flächenmessung ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VIII. Flächen und Flächenmessung'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/VIII.1._Flächeninhalte_vergleichen_und_messen|1. Flächeninhalte vergleichen und messen]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.2._Flächeneinheiten|2. Flächeneinheiten]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.3._Flächeninhalt_des_Rechtecks|3. Flächeninhalt des Rechtecks]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.4._Flächeninhalte_verschiedener_Figuren|4. Flächeninhalte verschiedener Figuren]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.5._Oberflächeninhalt_des_Quaders|5. Oberflächeninhalt des Quaders]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
<br><br><br><br>
 +
 +
                     
 +
</div>
 +
 +
 +
</div>
 +
</div>
 +
 +
<br>
 +
 
<div style="font: 10pt Comic Sans MS; padding:5px; border-bottom:1px solid #AAAAAA;">&nbsp;
 
<div style="font: 10pt Comic Sans MS; padding:5px; border-bottom:1px solid #AAAAAA;">&nbsp;
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:1px solid  #6C7B8B; padding: 0em 0em 0em 1em; background-color:#FFB90F;">
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:1px solid  #6C7B8B; padding: 0em 0em 0em 1em; background-color:#FFB90F;">
Zeile 12: Zeile 183:
 
<br />
 
<br />
  
[[Datei:Quadrate3eck.jpg]]
+
[[Datei:quadrate-mit-dreiecken.jpg]]
In der rechten Abblidung seht ihr zwei Quadrate. Jedes dieser Quadrate besteht aus einer Anzahl gleich großer Dreiecke. Wie ihr sehen könnt ist die Anzahl im rechten Quadrat deutlich größer. Das liegt daran, dass das rechte Quadrat aus mehr Dreiecken besteht als das linke.
+
<br><br><br>
Im linken sind zwei Dreiecke zu sehen, während es im rechten vier sind.
+
In der oberen Abbildung seht ihr zwei Quadrate. Jedes dieser Quadrate besteht aus einer Anzahl gleich großer Dreiecke. Wie ihr sehen könnt ist die Anzahl im roten Quadrat deutlich größer. Das liegt daran, dass das rote Quadrat aus mehr Dreiecken besteht als das blaue.
 +
Im blauen sind zwei Dreiecke zu sehen, während es im roten vier sind.
 
Durch Kästchenzählen fällt es im Matheunterricht beispielsweise viel leichter einzuschätzen, welche abgebildete Figur am größten ist bzw. wie groß jede Figur überhaupt ist.
 
Durch Kästchenzählen fällt es im Matheunterricht beispielsweise viel leichter einzuschätzen, welche abgebildete Figur am größten ist bzw. wie groß jede Figur überhaupt ist.
[GeoGebra Applet}
+
 
<br /><br /><br />
+
 
'''Merke:
+
<br>
Merksatz Merksatz Merksatz Merksatz
+
'''Beispiel:'''
Merksatz Merksatz Merksatz Merksatz
+
<br>
+
<br>
 +
<br>
 +
[[Datei:Kästchen1.gif]]
 +
<br>
 +
<br>
 +
In diesem Beispiel seht ihr ein Rechteck. Durch Kästchenzählen könnt ihr herausfinden, wie groß (in Kästchen) die Abbildung ist.
 +
Diese Abbildung hat eine Breite von <span style="color: red">7Kästchen</span> und eine Länge von <span style="color: red">9Kästchen</span>. Wenn ihr diese beiden Zahlen miteinander multipliziert erhaltet ihr die Größe des Rechtecks, nämlich <span style="color: red">63Kästchen</span>.
 +
(Ihr könnt jetzt auch noch ermitteln, wie groß die Figur in cm ist. Das könnt ihr leicht herausfinden, denn ein Kästchen entspricht üblicherweise 0,5cm. Also ist die Breite des Rechtecks <span style="color: blue">3,5cm</span> und die Länge <span style="color: blue">4,5cm</span>. Somit hat es eine Gesamtgröße von <span style="color: blue">31,5cm</span>.)
 
'''
 
'''
 
</div>
 
</div>
Zeile 32: Zeile 211:
 
<div class="multiplechoice-quiz">
 
<div class="multiplechoice-quiz">
  
Frage 1
+
Welche Dreiecke haben einen größeren Flächeninhalt als das gelbe Viereck?
(! A)
+
( B)
+
(! C)
+
  
Frage 2
+
[[Datei:Seminar.jpg]]
(! 1)
+
(! 2)
+
( 3)
+
  
</div>
 
  
  
&nbsp;
+
(! gelbes Dreieck)
<div class="lueckentext-quiz">
+
(! dunkelblaues Dreieck)
Texttexttext <strong>einfügen 1</strong> texttexttexttexttext <strong>einfügen 2</strong> text.</div>
+
(! Gelbes Dreieck)
 +
(! hellblaues Dreieck)
 +
(! braunes Dreieck)
 +
(! hell lilanes Dreieck)
 +
( Lilanes Dreieck)
 +
</div>
 +
 
  
  

Aktuelle Version vom 21. November 2013, 06:16 Uhr


 

VIII. Flächen und Flächenmessung:  

1. Flächeninhalte vergleichen und messen - 2. Flächeneinheiten - 3. Flächeninhalt des Rechtecks - 4. Flächeninhalte verschiedener Figuren - 5. Oberflächeninhalt des Quaders


Erklärung

Quadrate-mit-dreiecken.jpg


In der oberen Abbildung seht ihr zwei Quadrate. Jedes dieser Quadrate besteht aus einer Anzahl gleich großer Dreiecke. Wie ihr sehen könnt ist die Anzahl im roten Quadrat deutlich größer. Das liegt daran, dass das rote Quadrat aus mehr Dreiecken besteht als das blaue. Im blauen sind zwei Dreiecke zu sehen, während es im roten vier sind. Durch Kästchenzählen fällt es im Matheunterricht beispielsweise viel leichter einzuschätzen, welche abgebildete Figur am größten ist bzw. wie groß jede Figur überhaupt ist.



Beispiel:


Kästchen1.gif

In diesem Beispiel seht ihr ein Rechteck. Durch Kästchenzählen könnt ihr herausfinden, wie groß (in Kästchen) die Abbildung ist. Diese Abbildung hat eine Breite von 7Kästchen und eine Länge von 9Kästchen. Wenn ihr diese beiden Zahlen miteinander multipliziert erhaltet ihr die Größe des Rechtecks, nämlich 63Kästchen. (Ihr könnt jetzt auch noch ermitteln, wie groß die Figur in cm ist. Das könnt ihr leicht herausfinden, denn ein Kästchen entspricht üblicherweise 0,5cm. Also ist die Breite des Rechtecks 3,5cm und die Länge 4,5cm. Somit hat es eine Gesamtgröße von 31,5cm.)


  Aufgaben

Welche Dreiecke haben einen größeren Flächeninhalt als das gelbe Viereck?

Seminar.jpg


(! gelbes Dreieck) (! dunkelblaues Dreieck) (! Gelbes Dreieck) (! hellblaues Dreieck) (! braunes Dreieck) (! hell lilanes Dreieck) ( Lilanes Dreieck)




VIII. Flächen und Flächenmessung:  

1. Flächeninhalte vergleichen und messen - 2. Flächeneinheiten - 3. Flächeninhalt des Rechtecks - 4. Flächeninhalte verschiedener Figuren - 5. Oberflächeninhalt des Quaders