II.2. Rechengesetze und Rechenvorteile: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
(13 dazwischenliegende Versionen von 8 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
<div class="menuebox"><div class="menue">
 +
<imagemap>
 +
Bild:Erklärbär.PNG‎|30px|left|
 +
rect 0 0 0 0 [[P-Seminar/Mathematik_2010-12]]
 +
default [[P-Seminar/Mathematik_2010-12]]
 +
desc none
 +
</imagemap>
 +
 +
<div class="aussen"><div class="menutag">[[P-Seminar/Mathematik_2010-12|Hauptmenü]]</div>
 +
;-----------------------------------------------------------------------------------
 +
<popup name="I.Natürliche Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''I.Natürliche Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/I.1._Zählen_und_Ordnen|Zählen und Ordnen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.2._Veranschaulichung_von_Zahlen|Veranschaulichung von Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.3._Das_Dezimalsystem|Das Dezimalsystem]]
 +
*[[P-Seminar/Mathematik_2010-12/I.4._Römische_Zahlen|Römische Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.5._Zahlenmengen|Zahlenmengen]]
 +
*[[P-Seminar/Mathematik_2010-12/I.6._Runden|Runden]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="II. Addition und Subtraktion natürlicher Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''II. Addition und Subtraktion natürlicher Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/II.1._Addieren_und_Subtrahieren|1.Addieren und Subtrahieren]]
 +
*[[P-Seminar/Mathematik_2010-12/II.2._Rechengesetze_und_Rechenvorteile|2.Rechengesetze und Rechenvorteile]]
 +
*[[P-Seminar/Mathematik_2010-12/II.3._Terme|3.Terme]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="III. Die ganzen Zahlen; Addition und Subtraktion ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''III. Die ganzen Zahlen; Addition und Subtraktion'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/III.1._Negative_Zahlen|1.Negative Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/III.2._Vorzeichenschreibweise|2.Vorzeichenschreibweise]]
 +
*[[P-Seminar/Mathematik_2010-12/III.3._Anordnung_und_Betrag|3.Anordnung und Betrag]]
 +
*[[P-Seminar/Mathematik_2010-12/III.4._Addieren|4.Addieren]]
 +
*[[P-Seminar/Mathematik_2010-12/III.5._Subtrahieren|5.Subtrahieren]]
 +
*[[P-Seminar/Mathematik_2010-12/III.6._Rechnen_mit_Summen_und_Differenzen|6.Rechnen mit Summen und Differenzen]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="IV. Geometrische Grundbegriffe ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''IV. Geometrische Grundbegriffe'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/IV.1._Geometrische_Körper|1. Geometrische Körper]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.2._Geraden|2. Geraden]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.3._Abstände|3. Abstände]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.4._Parallelogramme_-_Umfang|4. Parallelogramme - Umfang]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.5._Kreise|5. Kreise]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.6._Winkel|6. Winkel]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.7._Achsensymmetrie|7. Achsensymmetrie]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.8._Netze_geometrischer_Körper|8. Netze geometrischer Körper]]
 +
*[[P-Seminar/Mathematik_2010-12/IV.9._Schrägbilder|9. Schrägbilder]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="V. Multiplikation und Division natürlicher Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''V. Multiplikation und Division natürlicher Zahlen'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/V.1._Multiplizieren_und_Dividieren|1. Multiplizieren und Dividieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.2._Rechnen_mit_Null_und_Eins|2. Rechnen mit Null und Eins]]
 +
*[[P-Seminar/Mathematik_2010-12/V.3._Schriftliches_Multiplizieren_und_Dividieren|3. Schriftliches Multiplizieren und Dividieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.4._Verbindung_der_Grundrechenarten|4. Verbindung der Grundrechenarten]]
 +
*[[P-Seminar/Mathematik_2010-12/V.5._Rechengesetze_und_Rechenvorteile|5. Rechengesetze und Rechenvorteile]]
 +
*[[P-Seminar/Mathematik_2010-12/V.6._Potenzieren|6. Potenzieren]]
 +
*[[P-Seminar/Mathematik_2010-12/V.7._Faktorisieren_von_Zahlen|7. Faktorisieren von Zahlen]]
 +
*[[P-Seminar/Mathematik_2010-12/V.8._Terme|8. Terme]]
 +
*[[P-Seminar/Mathematik_2010-12/V.9._Abzählen_am_Baumdiagramm|9. Abzählen am Baumdiagramm]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VI. Multiplikation und Division ganzer Zahlen ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VI. Multiplikation und Division ganzer Zahlen'''</div>
 +
*[[P-Seminar/Mathematik 2010-12/VI.1. Multiplikation | 1. Multiplikation]]
 +
*[[P-Seminar/Mathematik 2010-12/VI.2 Division | 2. Division]]
 +
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VII. Größen und ihre Einheiten ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VII. Größen und ihre Einheiten'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/VII.1._Messen|1. Messen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.2._Längen|2. Längen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.3._Rechnen_mit_Größen|3. Rechnen mit Größen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.4._Maßstab|4. Maßstab]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.5._Massen|5. Massen]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.6._Geld|6. Geld]]
 +
*[[P-Seminar/Mathematik_2010-12/VII.7._Zeit|7. Zeit]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
 +
 +
<popup name="VIII. Flächen und Flächenmessung ">
 +
 +
<div class="menuebox"><div class="menue">
 +
 +
<div class="aussen"><div class="menutag">'''VIII. Flächen und Flächenmessung'''</div>
 +
*[[P-Seminar/Mathematik_2010-12/VIII.1._Flächeninhalte_vergleichen_und_messen|1. Flächeninhalte vergleichen und messen]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.2._Flächeneinheiten|2. Flächeneinheiten]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.3._Flächeninhalt_des_Rechtecks|3. Flächeninhalt des Rechtecks]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.4._Flächeninhalte_verschiedener_Figuren|4. Flächeninhalte verschiedener Figuren]]
 +
*[[P-Seminar/Mathematik_2010-12/VIII.5._Oberflächeninhalt_des_Quaders|5. Oberflächeninhalt des Quaders]]
 +
</div>
 +
</div>
 +
</div>
 +
 +
</popup>
 +
 +
<br><br><br><br>
 +
 +
                     
 +
</div>
 +
 +
 +
</div>
 +
</div>
 +
<br>
 +
<br>
 +
 
<div style="font: 10pt Comic Sans MS; padding:5px; border-bottom:1px solid #AAAAAA;">&nbsp;
 
<div style="font: 10pt Comic Sans MS; padding:5px; border-bottom:1px solid #AAAAAA;">&nbsp;
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:1px solid  #6C7B8B; padding: 0em 0em 0em 1em; background-color:#FFB90F;">
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:1px solid  #6C7B8B; padding: 0em 0em 0em 1em; background-color:#FFB90F;">
Zeile 11: Zeile 182:
  
 
<br />
 
<br />
<ggb_applet width="502" height="512"  version="3.2" ggbBase64="UEsDBBQACAAIAIty3j4AAAAAAAAAAAAAAAAtAAAAMDE0ZDI5YzViZTBjNTZjY2MyNGZlOTE0OWNhZjY2NWVcQWNodHVuZzEucG5nAQIO/fGJUE5HDQoaCgAAAA1JSERSAAAAeAAAAGoIBgAAAHd6lUIAAA3JSURBVHja7Z0NbFRVFsentLUNy4pYiRDUlkKVbGogWgga3GjoUgSrpmhBS8UI0bASYsAEkQ/NQhbMQpUPvxYh4kaCVmItkCiCuJhANrR8FJZChULXQpcvS7+gQGfuvt9zpku1M/PuuzPzZtr7T04ymXffveec/7w399137jkuV/fAIEMKsrKyViJ89n6nEeNIz8nJ2VJaWuppbm4WPvCZ7zhGG+2m2MTgJUuWtHg8HuG5dk3Ul5SI2jlzTOEz33Fs+fLll422Q7W7Ygt9Z82adY6rtaWsTBzo21eUuVwdhO8at283r+i33367xTgnQ7stRpCXl1fe1tZmkru/T5/fkOuT8sREUb9pk0lyfn7+Ae25GEDv3r3zKysrxfULF8SBlBS/5PqEHwBtOYdztQejG8lz5869wBVZM316UHJ9QlvAufSh3RilGDJkyF/r6+vF5YoKUR4fb5lg2nIO59KH9mR0YsCaNWuucSUee+QRy+T6hHMAfdCXdmeUITs7ewsTq5+/+EKaXJ9wLn3Ql/ZodGHkzp07hfvKFXFo4EDbBHMufdAXfWq3Rgfipk6d+iO31zOLF9sm1yf0AeiTvrV7HcZtt9027eTJk+Jaba3Y16uXMsH0QV/0Sd/aw86i1+LFixu54k4WFiqT6xP6AvTNGNrNDmHo0KGreXHQvGePKIuLCxnB9EWf9M0Y2tPOYOCGDRvcwuMRlSNGhI5cr9AnfTMGY2l3Rxjjxo37J2+DLnz8ccjJ9Ql9MwZjaY9HEMnJyaP37t0r3E1N4mD//mEjmL4Zg7EYU3s+Mkh4+eWXf2ISVPvaa2Ej1yeMARiTsbX7w4zU1NRZdXV1orW6WpQnJUmRdXjIEFNkzmEMxmJMxtYMhBcpy5Ytu8wVdfzJJ6WvxoZvvzVF9jzGAoyNDpqGMOGBBx5Y39raKhp37LBNkt0fB2MyNjpoJsKDzJKSEo/n+nXx78xM+dvs8ePtBPNZ9vbOmIyNDuii6Qgx8vPzyyDn3Lvv2p4o3Qg7EzTG9ob3lGlGQrke2avXhEOHDlkOw+nwqNOvn2hrbPwNwXzHMZm+GBsd0AWdNDOhQdKcOXPMCMn/zJxpa7HCH+wskqADQCd00/QoIiMj4y8XjKvmsnHVlCckSJFxJCvLXG70C+MYbaT+zw0d0AWd0E0zpIZ+H3744VW4qBozxtYLg2Cw86ICXQC6oaOmySYefvjhkuvGzLX+yy+lb6XVkycLq6CtbP/ohG7oqJmyh6zvvvvO4zGePQ9lZNh6aW8VdoIF0And0BFdNV1yiHvuueeO4fy6pUvlw24WLRKy4BzZcdANoKtLh/dIrEempEyprq4W1+rqxP6bb7YVOCcLOwF76IaO6IrOmjlr+N0bb7zRYIbhTJkiH/paXOyXxJaWFlP8gXOlw3sMHQE6o7umLwjuvffeoqamJtGyd68o69HDVvD6jdi2bZvIy8sTt956K6GwpvB5woQJYrt3d+GNkA6aN3REV3RGd81gYKR98sknbWYYzsiRcs+nbD85cKCdqCvGLXfSpEntpPqTgoIC8yWCD/Qhs+3FDO8xdEVndMcGTaMfPProo9sJkbn46afSt0rfBjIfCgsLg5Lrk+eff77DuTIb13yCzuiODZrJTpCQkPDInj17hLu5WRwcMEBusnPLLeL6uXPtBLEVNC4uzjLBtOUcH+iLPqXWvA2d0R0bsEUz2hHx06dPr8G5pxcskL56zq5Y0eEKXLlypWVyfbJq1aoOfdCnrB7oDrAFmzStXtxxxx0za2trxdWTJ8W+5GTpMBzybdyIuXPnShP8+uuvd1ymNvqUDe9Bd2zAFmzSzP6CW9566y3z2eXE00/Lh+F8881vZsI7duyQJphzfg36ltUHGwA2YVu3Z3fEiBFrmfE27twp7cwfx4/v9Hn22LFj0gRzTmdgDOnwHsMWbMK27s7vkE2bNrk9bW3iyLBhco9FN90kWquqOiXl0qVL0gRzTmdgDMaSek1p2IJN2IaN3ZbdvLy8f5lhOB98IH2V/DR7dsClx2Tj/9AqubQNBMaSDu8xbALY2C3J7dmzZ+7BgwdFW319p3msAj6S3H67aGtoCEhKamqqZYJpGwiMxZhS4T2GTdiGjdja3fhNnD179lkzDOeVV6SvjvNr1gR9eWD8/1kmmLbBwJjS4T2GbQBbsbnbsDtw4MD558+fF1cqK81kZFL/b/ffL4TbHZSQxx9/3DLBtA3+usltji01TzBsw0Zsxebuwm/f1atX/xKGM3asdBhO065dll7/TZs2zTLBtLUCxpYO7zFsBNiM7V2e3VGjRhUT6nJpyxb5MJxJkyy/312wYIFlghd4V6AshfcYOsjqja3YjO1dnd/7tm3b5jFXie6+W26VqGdPcbWmxjIRMsuVtLUKdEAXqdU2w1ZsxnZ80FXJjSsoKDiMk/67bJl8GM6bb0pFaBQXF1smuDhAkECn4T2GLrL6YzPAB66uGN6TkpIyuaqq6pc3NZJhOBV33SXcASIxOsP3339vmWDaSoX3GLqgk2x4D7bjA3zR5R5758+fX49zThkTGukwnM8+k46xklmu9LdMGQjoJGvHKe9kDl/gky7DbmZm5t8aGhpEy7590mE4Rx96KPDuBD8gsahVgmkrDUMndJMO7zF8gC/wSVfh965169ZdV3GIXSQlJQUllzZ2ofKDxSf4JubZHTt27Ddut1vplmYXVpYrgy1TBoPdvxx8gm9imtyEhIQ//vDDD0qTEhUMHz48KMG0UYHKpBHf4KNY5bfHSy+9VK36WKGC3NzcoATTRhUqj334CF/FHLv9+vX7c01NjdLCgCqmTp0alGDaqEJl4QYf4atY4/fmpUuXNqss7YUC8+bNC0owbUIBlaVXfIXPYmc98r77/s4WEZXF+VBgxYoVQQle8auITBXYfXmCr/BZrPCbUVxc7FZ5vRYqfP7550EJpk2ooPL6E5+5YqE41xNPPLGbCH+VF+Shgjc1f0ChTShhN4ABn+G7qCY3KSkpZ//+/UohLqHE0aNHgxJMm1BCJQQJ3+HDqA3DmTlzZp1qkFoocfHixaAE0ybUUAkixIdRGd6TlpY255zx0K8SZhoOBFquVFmmDPjYpBAGjA/xZdSF4bzzzjutKoHi4cKdd97pl2COhQsqgfz4MqrCe0aNGrXhmvGwr7LVI1zIysrySzDHwgm7W3HwJT6NFn6Hbt261aOyWSuceOyxx/wSzLFwQmUzHT51RUPh6meeeeag6nbLcOKFF17wSzDHwg2V7bD41lFye/fuPdGs1auwYTrcYFuoy+KW0XBAZUO7t6bxRKf4TTYcdFEl5UEkYExY/BLMsUhAJSUFPnY5UdP4nnvuWWrW6lVIWhIJbNy40S/BHIsIFJLK4GN8HWl+B3z00Uf2avV60w5FCqWlpX4J3rx5c8T0UEkLha9dkaxpnJ2dvdWs1auQOCxSOHPmTKcJWfiOSiqRhN3Ebt6axlsjxe9I4ohVUv9FGgsXLhQ9jKvHRy6f+S7SUEnN6I3zDntNY2r1mtUtVJJ3OoEjR46I999/3xQ+OwWV5Kr43hXOXRHU0yXERCX9bneHSnpkfB/Omsa/X7RoUZMZhmMzgbaTIAfH7t27TfGXjyNSUElwDgdwEXJ2hw0btprQEpUU+E6ASt5PPfUU4ant/8GJiYnmd6dOnXJML7slCuAALkLN7yBfrV67RSycQEVFBbc0v49JHKONE1ApMuKtaTwoZOzm5ubartXrK0MTaZBBNj09PegL/8GDB4urV686oqPdMkFwASehCsP5E/VzVQpJOYF169ZZ3ny2fv16R3RUKfQFJ3CjvPtkxowZZnULlVJwTuDZZ5+1TDBtnYJKqT64canUNE5NTX3VrNWrUMzRKYwePdoywbR17LFJodimt6bxq3b5TSkqKrJdq7exk+SekYSVbO/RcAUDlXK5cOSyU9P4wQcf/AcTFZWCyk5i7dq1lgmmrdOwW/AajuBKlt/Mr776yn6t3upqxx1Gtte0tLSg5DLTbo2CFTY7Jet9f4Nw5ZKpaTxx4kRzW/3ZVatCUqvXKZSXl4s+ffr4JZfqK/sUMgiEGnYmsme9merhzBK51MU9fPiwvSl8//7C3dQUVWu/x43JCHuA4+Pj24nl85PGLfHEiRNRpSu+w4d2HkXhzEpNY2r1njcfwmfMCGmtXqdBQPmuXbtMIXdktMLWYpLBFYA7V6CaxtTDZSuHnWW0SjK2RigMp2u/bvKYvrSzHAx3gWoaU6vXDMOpys4OS61eDWuw9ULH4AzAoauzmsYqtXp9OxS0hE7scBCopvFCYpfMl9GDBtnqXIvzAnfemsZMJv9f05hCjUA7KfalbskSk8vCwsJyH793f/311x6m6NpBsS8E9bEJncqqBrd/cCUmJk4hSuDnjRu1g7qIwCWcwq1r+PDh73FJn543Tzuni8hpb2oouHVlZWWZa12nFy7UzukqBHtjvuHWFR8fP5nq1XZ2KWiJ0lu0wSWcwi2TrPTS0lIP0fMVqanaQTEucAiXcAq35jR6zJgxmwnkulRaKp3IS0v0CNzBIVzC6Y0LHelFRUVmUYRGY3otm+dJi/MCZ3DnjfJoab96b8y1sXz58suwT46I+pISM3fTqRdf1BLFAkdwBWdwB4eBcnuk5+TkbOH+3RyB9AoaIXo5YXAFZ3DX2ZXb6U4GQwqMafbK8ePHb9ISvQJHcOVvp8P/ANjm4sJDMCeqAAAAAElFTkSuQmCCUEsHCKfTFvYHDgAAAg4AAFBLAwQUAAgACACLct4+AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa227bRhB9br5iwwKBjUQ0L6JsNVIKX+QLksYB7OQh6MuSXFJb86Isl7bkL+iHFGi/oE9585/0Szq7K0qkZMuSZTuSAYPi7nA5c+bM7AzJ1q/9OEKXhGU0TdqaqRsaIomX+jQJ21rOg9qO9uu7F62QpCFxGUZBymLM25qtW5oYz+m7Fz+1sm56hXAkRb5QctXWAhxlRENZjxHsZ11CeGUc530aUcwGp+4fxOPZeEItcpL0crgLZzmMebH/gWbF6Za8YS+i/IBeUp8wFKUeqN4E1eHXF8I49XDU1uqGGrHamuVUJ2HIFrPdlNHrNOFCfLx4hF0SAQBnfBARhC7FrK2mAhBGKKPXBO5oibHWlsSgRXIvoj7FibBTqghCCF1Rn3fbmmNYcDdCwy6Y4ZiGWs1LU+afDTJOYtT/SlgKmprbwgcDdWYbTXGWgcpELKIb5T8T5O6ckjcgl2eEczAlQ7hPxiiHjPqVk5NsL43GQ72UJnwf93jOJBHs4ZBEpK2BSkyYspuEERmOgX1el3gXbto/U/DYaunzQU9eIhVyw/00ShliwicOCAyPrjpKGaHpSMqQMoaUGK4hFh3Nm01LSsijq47KiTRRqg0tNwurC/Bxn2ZIDAiAgb8j46X725qG8oTyD8UJ8OZiaKqpLviYxy4ETpk5ozXNx1qztTVBrNYFYQmJFH0S8G2e5pniqLqXVMQnHo3hVE0MIcHCXZ9BATXqk5CRQnEVdgowOVuh6MRwa6tQQuiQga4eh/wB9nBhiwhvDqElfvmYixERIBGJCUQPl3yQdBrhsquNskgqE8IkcCXTQGDsfcOqcEie46jXxaCpbhThPIAkUTZKLvpb6ldNxQlAJu2AgOyJBYRTeoQof/Ihj1EPFpRRUVJKwpShflur1XXTbJb/IEohGek7k6PXKt/K61V0iYwxzjbgegWZAK8PiTQTSbpAZA8SdR+03Ohv7G6i16ipO2/QAH5valWIt+7Bfu8+7Mf0LkNfDkwJ/0NhH0Pn6PbOZH57AuT270IO1ZClG4vit7/i+FmT+NWXBfCgDOAy0B2sDHR3RO2y2HlpHOPERwmOwfhPaTQI00QaTUWBg7Ahch/CpoxnbElyYlsgo6zOeSHWg4tNJYqVqKtEPTjUIZurew/veAvw6t4Fsmq56kbJu7AfJeBruZvz8r5d8ZGqyu7JzI5dzczifOQncxE/VchYMSojoTgb6YJ/mEGziXcaBBnhkmcqJhvzsdKQpWBbgwwleVerO/r2ToWlW3NbTL4lSiZTFQeNoYb2KB8xLRK72knCof4gcj+fLisuCOmJeu40OWc4yUQzoGRK5cqcvnJX1Fcz3GEN3SHdItxhGvp2Y31d4K2fC4qIqBUhYTUmImKN/eGvnz9qUzGxo1t22R/b6+OPanHSYRfRzV/Mhf/pMqUC+eNWKePNYkcl/2foWWzd2W5Wo0jcGgrKii9nl97N+yvHzq2Vo6M7i1aOnVVoGO8tH2uG3qhU5EZj2dr7cIxgRyLYEQjai9feh6teewMpHxu8ozJ4486vs3DPfLQy4N3e8z0B8Y7vwu5h9DtedQSXZd88rV9H9XNHqp87Vv3c4a2tn6VEiRINlWhXtX7B4q2f9ZSlxswc+0StH/lhBi1dyxalbEOvN6qEW5vKadIb4fp5w55q7hq6WV9fF3TXzwVTzV3NruvNRiU3r60/gvXzR206JizddsqV2s5KO2SqiOGkz81hIfPqW57yt+9h08w5tFCXIYG26/oXNaxN1y/iWq260HO2hVN+Cmif+FXjh++nM8JoMH4FL9/GQvWSFW8aFck4ZvyTKGKqb0Nghx6/DjFEZzYXqvUKqrtZll7TB6FaXwJVx1xFWDtlWDuLwepUYfV9ShhHUOa9QT5mgfiFYAy9j3AcE5Yg8eUCcWkovungOM+8LknQq59N420qPpW4ImGEs4wkuhzbwKCaK/TzUBuJkw1XnGzeMSsn5/elM7cvvTTxqXqOAdKnQ2HAbvwQZhO9CvlbJPH878+/0eRkJCeP1OTglslBceXkZCgnDzdnB6vxXJyqP4hTpujB5uKUNSenznLZTwB/SlxSvFFcaAs+YDQ/H6wn4cPBLD7sz3L5wSyy7K4TH6ZT93x8OLn1gVx98QdyJw/r54uPgJaG9N7HSYZuL/cavGI8jXE4tq1HPVUMBBTKG9XxG2bdt5qe4xLDcxqe51n1gDTNetPDQaPhkN93vS7Pk9DUe0moVKDJHvYuQpbmiT9V+ZScnsiPhCRc0nknCxRhaxN8MPnP1LIrsgGYi7Lz4Y/p70/njWo63z8+//zx6KVM0wcUqi90JEswgkIScUjmH09ABAU339kwy7uc4Quh3Mv5M3ljvTL5apDp0ZLd09cT4qQxZz1hVwj4lZIuEkVDCRV0ncfovEti/AbdfIfcBYVGhvwcXcGBsAB3GVwQ3/wLKZFkXJ+fh/bSPdizucEaucGeext/fes2vlX+6FJ+gTz8Ovvd/1BLBwhl8rLTSgcAAM8tAABQSwECFAAUAAgACACLct4+p9MW9gcOAAACDgAALQAAAAAAAAAAAAAAAAAAAAAAMDE0ZDI5YzViZTBjNTZjY2MyNGZlOTE0OWNhZjY2NWVcQWNodHVuZzEucG5nUEsBAhQAFAAIAAgAi3LePmXystNKBwAAzy0AAAwAAAAAAAAAAAAAAAAAYg4AAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAJUAAADmFQAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
+
<ggb_applet width="497" height="505"  version="3.2" ggbBase64="UEsDBBQACAAIACJ5Rj8AAAAAAAAAAAAAAAAtAAAAMDE0ZDI5YzViZTBjNTZjY2MyNGZlOTE0OWNhZjY2NWVcQWNodHVuZzEucG5nAQIO/fGJUE5HDQoaCgAAAA1JSERSAAAAeAAAAGoIBgAAAHd6lUIAAA3JSURBVHja7Z0NbFRVFsentLUNy4pYiRDUlkKVbGogWgga3GjoUgSrpmhBS8UI0bASYsAEkQ/NQhbMQpUPvxYh4kaCVmItkCiCuJhANrR8FJZChULXQpcvS7+gQGfuvt9zpku1M/PuuzPzZtr7T04ymXffveec/7w399137jkuV/fAIEMKsrKyViJ89n6nEeNIz8nJ2VJaWuppbm4WPvCZ7zhGG+2m2MTgJUuWtHg8HuG5dk3Ul5SI2jlzTOEz33Fs+fLll422Q7W7Ygt9Z82adY6rtaWsTBzo21eUuVwdhO8at283r+i33367xTgnQ7stRpCXl1fe1tZmkru/T5/fkOuT8sREUb9pk0lyfn7+Ae25GEDv3r3zKysrxfULF8SBlBS/5PqEHwBtOYdztQejG8lz5869wBVZM316UHJ9QlvAufSh3RilGDJkyF/r6+vF5YoKUR4fb5lg2nIO59KH9mR0YsCaNWuucSUee+QRy+T6hHMAfdCXdmeUITs7ewsTq5+/+EKaXJ9wLn3Ql/ZodGHkzp07hfvKFXFo4EDbBHMufdAXfWq3Rgfipk6d+iO31zOLF9sm1yf0AeiTvrV7HcZtt9027eTJk+Jaba3Y16uXMsH0QV/0Sd/aw86i1+LFixu54k4WFiqT6xP6AvTNGNrNDmHo0KGreXHQvGePKIuLCxnB9EWf9M0Y2tPOYOCGDRvcwuMRlSNGhI5cr9AnfTMGY2l3Rxjjxo37J2+DLnz8ccjJ9Ql9MwZjaY9HEMnJyaP37t0r3E1N4mD//mEjmL4Zg7EYU3s+Mkh4+eWXf2ISVPvaa2Ej1yeMARiTsbX7w4zU1NRZdXV1orW6WpQnJUmRdXjIEFNkzmEMxmJMxtYMhBcpy5Ytu8wVdfzJJ6WvxoZvvzVF9jzGAoyNDpqGMOGBBx5Y39raKhp37LBNkt0fB2MyNjpoJsKDzJKSEo/n+nXx78xM+dvs8ePtBPNZ9vbOmIyNDuii6Qgx8vPzyyDn3Lvv2p4o3Qg7EzTG9ob3lGlGQrke2avXhEOHDlkOw+nwqNOvn2hrbPwNwXzHMZm+GBsd0AWdNDOhQdKcOXPMCMn/zJxpa7HCH+wskqADQCd00/QoIiMj4y8XjKvmsnHVlCckSJFxJCvLXG70C+MYbaT+zw0d0AWd0E0zpIZ+H3744VW4qBozxtYLg2Cw86ICXQC6oaOmySYefvjhkuvGzLX+yy+lb6XVkycLq6CtbP/ohG7oqJmyh6zvvvvO4zGePQ9lZNh6aW8VdoIF0And0BFdNV1yiHvuueeO4fy6pUvlw24WLRKy4BzZcdANoKtLh/dIrEempEyprq4W1+rqxP6bb7YVOCcLOwF76IaO6IrOmjlr+N0bb7zRYIbhTJkiH/paXOyXxJaWFlP8gXOlw3sMHQE6o7umLwjuvffeoqamJtGyd68o69HDVvD6jdi2bZvIy8sTt956K6GwpvB5woQJYrt3d+GNkA6aN3REV3RGd81gYKR98sknbWYYzsiRcs+nbD85cKCdqCvGLXfSpEntpPqTgoIC8yWCD/Qhs+3FDO8xdEVndMcGTaMfPProo9sJkbn46afSt0rfBjIfCgsLg5Lrk+eff77DuTIb13yCzuiODZrJTpCQkPDInj17hLu5WRwcMEBusnPLLeL6uXPtBLEVNC4uzjLBtOUcH+iLPqXWvA2d0R0bsEUz2hHx06dPr8G5pxcskL56zq5Y0eEKXLlypWVyfbJq1aoOfdCnrB7oDrAFmzStXtxxxx0za2trxdWTJ8W+5GTpMBzybdyIuXPnShP8+uuvd1ymNvqUDe9Bd2zAFmzSzP6CW9566y3z2eXE00/Lh+F8881vZsI7duyQJphzfg36ltUHGwA2YVu3Z3fEiBFrmfE27twp7cwfx4/v9Hn22LFj0gRzTmdgDOnwHsMWbMK27s7vkE2bNrk9bW3iyLBhco9FN90kWquqOiXl0qVL0gRzTmdgDMaSek1p2IJN2IaN3ZbdvLy8f5lhOB98IH2V/DR7dsClx2Tj/9AqubQNBMaSDu8xbALY2C3J7dmzZ+7BgwdFW319p3msAj6S3H67aGtoCEhKamqqZYJpGwiMxZhS4T2GTdiGjdja3fhNnD179lkzDOeVV6SvjvNr1gR9eWD8/1kmmLbBwJjS4T2GbQBbsbnbsDtw4MD558+fF1cqK81kZFL/b/ffL4TbHZSQxx9/3DLBtA3+usltji01TzBsw0Zsxebuwm/f1atX/xKGM3asdBhO065dll7/TZs2zTLBtLUCxpYO7zFsBNiM7V2e3VGjRhUT6nJpyxb5MJxJkyy/312wYIFlghd4V6AshfcYOsjqja3YjO1dnd/7tm3b5jFXie6+W26VqGdPcbWmxjIRMsuVtLUKdEAXqdU2w1ZsxnZ80FXJjSsoKDiMk/67bJl8GM6bb0pFaBQXF1smuDhAkECn4T2GLrL6YzPAB66uGN6TkpIyuaqq6pc3NZJhOBV33SXcASIxOsP3339vmWDaSoX3GLqgk2x4D7bjA3zR5R5758+fX49zThkTGukwnM8+k46xklmu9LdMGQjoJGvHKe9kDl/gky7DbmZm5t8aGhpEy7590mE4Rx96KPDuBD8gsahVgmkrDUMndJMO7zF8gC/wSVfh965169ZdV3GIXSQlJQUllzZ2ofKDxSf4JubZHTt27Ddut1vplmYXVpYrgy1TBoPdvxx8gm9imtyEhIQ//vDDD0qTEhUMHz48KMG0UYHKpBHf4KNY5bfHSy+9VK36WKGC3NzcoATTRhUqj334CF/FHLv9+vX7c01NjdLCgCqmTp0alGDaqEJl4QYf4atY4/fmpUuXNqss7YUC8+bNC0owbUIBlaVXfIXPYmc98r77/s4WEZXF+VBgxYoVQQle8auITBXYfXmCr/BZrPCbUVxc7FZ5vRYqfP7550EJpk2ooPL6E5+5YqE41xNPPLGbCH+VF+Shgjc1f0ChTShhN4ABn+G7qCY3KSkpZ//+/UohLqHE0aNHgxJMm1BCJQQJ3+HDqA3DmTlzZp1qkFoocfHixaAE0ybUUAkixIdRGd6TlpY255zx0K8SZhoOBFquVFmmDPjYpBAGjA/xZdSF4bzzzjutKoHi4cKdd97pl2COhQsqgfz4MqrCe0aNGrXhmvGwr7LVI1zIysrySzDHwgm7W3HwJT6NFn6Hbt261aOyWSuceOyxx/wSzLFwQmUzHT51RUPh6meeeeag6nbLcOKFF17wSzDHwg2V7bD41lFye/fuPdGs1auwYTrcYFuoy+KW0XBAZUO7t6bxRKf4TTYcdFEl5UEkYExY/BLMsUhAJSUFPnY5UdP4nnvuWWrW6lVIWhIJbNy40S/BHIsIFJLK4GN8HWl+B3z00Uf2avV60w5FCqWlpX4J3rx5c8T0UEkLha9dkaxpnJ2dvdWs1auQOCxSOHPmTKcJWfiOSiqRhN3Ebt6axlsjxe9I4ohVUv9FGgsXLhQ9jKvHRy6f+S7SUEnN6I3zDntNY2r1mtUtVJJ3OoEjR46I999/3xQ+OwWV5Kr43hXOXRHU0yXERCX9bneHSnpkfB/Omsa/X7RoUZMZhmMzgbaTIAfH7t27TfGXjyNSUElwDgdwEXJ2hw0btprQEpUU+E6ASt5PPfUU4ant/8GJiYnmd6dOnXJML7slCuAALkLN7yBfrV67RSycQEVFBbc0v49JHKONE1ApMuKtaTwoZOzm5ubartXrK0MTaZBBNj09PegL/8GDB4urV686oqPdMkFwASehCsP5E/VzVQpJOYF169ZZ3ny2fv16R3RUKfQFJ3CjvPtkxowZZnULlVJwTuDZZ5+1TDBtnYJKqT64canUNE5NTX3VrNWrUMzRKYwePdoywbR17LFJodimt6bxq3b5TSkqKrJdq7exk+SekYSVbO/RcAUDlXK5cOSyU9P4wQcf/AcTFZWCyk5i7dq1lgmmrdOwW/AajuBKlt/Mr776yn6t3upqxx1Gtte0tLSg5DLTbo2CFTY7Jet9f4Nw5ZKpaTxx4kRzW/3ZVatCUqvXKZSXl4s+ffr4JZfqK/sUMgiEGnYmsme9merhzBK51MU9fPiwvSl8//7C3dQUVWu/x43JCHuA4+Pj24nl85PGLfHEiRNRpSu+w4d2HkXhzEpNY2r1njcfwmfMCGmtXqdBQPmuXbtMIXdktMLWYpLBFYA7V6CaxtTDZSuHnWW0SjK2RigMp2u/bvKYvrSzHAx3gWoaU6vXDMOpys4OS61eDWuw9ULH4AzAoauzmsYqtXp9OxS0hE7scBCopvFCYpfMl9GDBtnqXIvzAnfemsZMJv9f05hCjUA7KfalbskSk8vCwsJyH793f/311x6m6NpBsS8E9bEJncqqBrd/cCUmJk4hSuDnjRu1g7qIwCWcwq1r+PDh73FJn543Tzuni8hpb2oouHVlZWWZa12nFy7UzukqBHtjvuHWFR8fP5nq1XZ2KWiJ0lu0wSWcwi2TrPTS0lIP0fMVqanaQTEucAiXcAq35jR6zJgxmwnkulRaKp3IS0v0CNzBIVzC6Y0LHelFRUVmUYRGY3otm+dJi/MCZ3DnjfJoab96b8y1sXz58suwT46I+pISM3fTqRdf1BLFAkdwBWdwB4eBcnuk5+TkbOH+3RyB9AoaIXo5YXAFZ3DX2ZXb6U4GQwqMafbK8ePHb9ISvQJHcOVvp8P/ANjm4sJDMCeqAAAAAElFTkSuQmCCUEsHCKfTFvYHDgAAAg4AAFBLAwQUAAgACAAieUY/AAAAAAAAAAAAAAAAKgAAAGQ1MzQzNDkxNjJlNzIwMTkyNzdlYTAxYmM3Y2E5MTM3XELDpHIyLmJtcMWTiTvUeQDGv/Ob4zf3sSQ5c457Ru5MZMwMM4ymMcaRY1AyGMdOMWgRq2jSREjNPJLqUdOoTW1FtWx0sB4qlA5pV7ZjO9iejhWPbf+KfZ/n/bzP5w94a0VRYSS8GR4AQOKHc8Tf1vFb6VjkN0p6hwIAQAJRpIT7TREIBAoJYBRAo9EENMCiEQQMwMMIHAZJxAACgUAikSgUijEJWkUE1hRgRoMsvoOoVKqxsbGFhYUNDdisQNqaIB2MAN0YOK8A7ibA2QzFMAXuFigvM8A0h3zMgZ8F8LGC/C3BWivgbwWttUauswZ+duhAG/RaezRrNSLIHhfkhA6xAettEGxbwLMDPHvAo0M8OhzqguG6YnhumHB7IHAEQjoQMOAoJxDpjI5yQwpc8ZHu5EgmZgOTJnJBiN0xYg9ULANKYCDE3rDUExXjC29kksWelAQmYtMaZNIaKM4PmxCATQ7EbvQyFvuYRPuayryhLb6QzB+dEYDawsLI1mEzgrFZLLRiHSo3CJXIY6bwvTLW43LWwwo2rODg8nh4JRfezkYXcjD5odh8Hq4wDFsYgS/mYUrD4TI+XMzHqvg4lQBXIiSURhHKRAQOhyMQCIRCYZY0JCeek5cYlp/EL0qNKE6LKN0qLs+KKc9N3BkJ794AV0UTakRwbSxxbzROI8HWSXAaKU4Ti9dsIjZsIh5MJjYlk3RJ+NZkfKuMoEsltmeQO+TkjizyaTlRn0k6mUnWZ5P1OZTObPLZXEpXHvlcPuXnfHLPNsoFJfXyNmpPIfVaEfUXFbW3mFaRHVOhiKvMS+wrpl4vofXvoA2U0gZ20DQV+Q1V27R15dp95W37y/WNZWq1WltXod1XodPsbK2vOtJQ3d5Uc7xF3aHV6FsbTrc1Go429xoO9V7s7L145nr3uZFbfaOD1+8MDdwbvvHg3vDk2MijidEnk2PPnkzOTD/+e+7dh/m55eVl8L/mCLo1BABoic8Jkage/SBRhBsVmJa/26J8WqhQ9hz07orfTKOhpDxnVEKNIC+DYRqSJpNT+S7PCZk/vIpwpnGr0dyyl2qeuC21+nRQ+Ejlndk1282jC5Ta81fOX3mbe2VKR8n5zFpezut98bYolIeARkpSyrpxO/0/9GQ3Xfo4CG47+Wc1Xz52VZ0Fhmbl6Uu8exVIplFsN+FGkh1BKYWag9efL1ipHOXNsco+NDU+2PDl2VHEOYlIGzE2tWSCESFdBLeZUX34T/VjDPq8x3jEr9VETmzhIdGtNsDl33Zdnbrk0HZ1ku70aKgZu/ym5ThsP6jy+HF3QYNDy8zr9tKq+bqFsMuueytWxuEXl5rtqhDmhrSZ6MeiloU3GMMVGFLHfyqLm2CN1IVqpuYAvQDvFswPl/VuOhj68dQ75QSbHZEavDXSyXQEotammuK60mRFYl2pkZCI3CJflc+svOfWiej/tCsDvrOSK1yksbKG+0tTVJO7w7+mIAvVjOePeJX90/0dSJZb2tjQC32bnfdy92GXOZWtX47CIwEruciu2K4Lux33MNVmZebB1ique3qxI79cVUgNfH3sZuJr4eoMo0MPDe4vF098nD7lVnzA8pgL/yvsWJ5I+dKSm25iQHhpp/Kz6y3DmLH46FrfHvPpU89aE+o82LtPspnsgZOVpBez4Kb5oGrzqJONIqQWKb3Q63VNd2LYqn78/gC2ftdvZ+++WmFb4CkscCcW/TTbzwqULkzZyTvk39sIzl8qfSiU71xV0jR4ZHAMdTHz/tgujN8dp6nlC1a0WeKl/fo4k+Mpnqq3oj9lsPfXrf30PeP7X+q73+s+L+Yhdz1ZR+5YGMcZGFTHbIf2wIkVn+avXb1xSbfZmnCNFd8ZdXUh/f6qIMXovqSBPTMzO/zXKDQx4UkfoPfxnXcDTv5lfzr2QuYf0yZCNVuVp0f/bnnc0DUZfNguhj/f1WjNkGtrPao9fYaksWcNxU/vjrxCLEZWbXTN2BdTI/26t7Wxfw/tgOQf66cJM8qjja59/x2Cz43inGHLKv8FUEsHCA8OWanqBQAAQgYAAFBLAwQUAAgACAAieUY/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa627aSBT+vX2KqVeqErU4vkLYQqtcyEXtNpWS9kfVP2N7MLP4VnucQJ5gH2Sl3YfYf32TfZI9MwPYBkIgJC1EimBmjsfnfOcy38FuvR2EAbomaUbjqK3oqqYgErmxRyO/reSsW9tX3r551vJJ7BMnxagbpyFmbcVUDYXP5/TNs19aWS++QTgQIp8puWkrXRxkREFZkhLsZT1CWGUe5wMaUJwOL5w/iMuyYkFuch4lOZtMuqH3nmYwZmlOlD1xxySg7JheU4+kKIjdtmLYoDt8+0xSRl0ctBVLkzPG7CJMmXy1F6f0No4YFy82D7BDAkDgkg0DgtA1XzXlUheEEcroLQG0DD7X2hMgtEjuBtSjOOKGChVBCKEb6rEe6NJswN0I9Xtghq1Zcjc3jlPvcpgxEqLBF5LGoKne4E4YypGpNfkoA5UJv07Vyn86yN25JG5Ari8JY2BKhvCAFDD7KfUqg/PsMA6KqSSmETvCCctTEQnmaEog0lZApZSbchD5ARnNGeCnHnH7Tjy4lPCYcuurYSIuEQo5/lEcxClKuU9sEBh9OvJTyHBNJ1KakNGExGgPvulkXW8aQkJ8OvJTOpFGUrWR5frYal0b34ZmiE9wgCGAJ8YL97cVBeURZe/HA4ib/shUXV7wIQ8dyJxy5Ez21B9rz9beVGC1+iSNSCDDJwLf5nGeyRiV9xKKeMSlIQzlwggSzN31CRSQsx7xUzJWXOadBEysauUQnZpu7Y2V4DpkoKvLoICAPYzbwvObQWrxbx5mfIYnSEBCAtnDRDyIcJrgcqBMykgsKsI0cCXTQKDwvmZUYkiMcZD0MGiqauN0HkKRKBslNv099qqmdumAeHKm8KiwP0ODtlKzVG0fMg6SWW3Uy8kG97yVxVNcIjOFZ39ROcCN0nwOxACqYsYr7ti6Q6i6g6St7Ax2DnbRS9RU7VdoCN93lSpce/fgeHgfjoVhZRjLSSagfCiEBVq2ahlPA9bRXWChGjJUbVXIjjYPMmMKMr2+LmbHZczWQet4Y9Aq0nFduNw4DHHkoQiHYO/HOBj6cSTspJyGIKzxAoWwLhIVGyIEscnBkIbmbCyWwMW6FMVS1JGiLnxYUHLlvUd3nIO1vPcYTLld9TRjPTg0InCvOHJZ+XCtuEU44r7yaZvV8snHE9foq7imEn8VozLi89FEF/zTDFocaxfdbkaYCC1dxFV9uUDUBF9rK1CHRNzVLFs1jFkutpTF5FskZTJJC2gIRNelbBJpwRAI2XnEgCQQcejOnv19QhJOui6iqxRHGafs1VNteV85G+qrBe4wRu4QbuHu0DV136qeQFvrD3f7/DFOj9o4P4z6VHqY2+sPb/v8UZtJkH1Vr2+PC6p8pJP2g+9/pQ78zzKTZVB+KDMpTgtTnhb6/iL8cQTtmOiRoNlP5OmKsoQQ2SuOAUYJ3E503CV1S74z1f1Gs/xnjTj21PRCAmTczxc7c/mirdqr8sXOJjR280hjTVMbZhmyfWtdkn1SgNYRoHU4aObqJPtkA0k2hN5j43Vaxqto5Dord72nG4PXpIV7gvA6uwuuhwXZ2QaCtm6MLdPJdWR7dirbszPZnp3M7eQMKUqkqC9Fe7KT667eyRlPSRYW1ssn6uTITzNobTY6JqMNVTPKAWdvDxGa9oa/fd4wZ3o16A3sSgXYXn/0ts8fM71azQTOV06Q5vb6o7t9/qjNJoihGtZG+2CGtzAyYPqIu7z4lsfs9Ts4NHMG7dC1T6CJuv1NTiuzlIVfq1Q3WuyfJyYtcx8RiWfCGUlpt3juLZ6A1pUx7KMDOGM4ZR85iak+woATuniGofEuaylUrQqqB1kW39IHoWqtgaqtbyKsnTKsndVgtauweh4lKUNA814hD6dd/g3BHHoX4DAkaYT42wLEoT5/kYLhPHN7JEIvftW11zF/PeGG+AHOMhKpYm4Hg2oO189FbcQHOw4f7N6xKhaX96W9tC/dOPKo/E0CpC9GwoBd8ZvKLnrhs9dI4Pnfn3+j6cVALJ7KxeGcxeH4yulFXyye7C5OVu1HxZT1oJjSedu1VEwZS8bUZS76CYifUizJuJGx0ObxgNHy8WA8STwcL4qHo0UuP14ULAfbFA+zpXu5eDif++OatfqPa+cPa+HHL96sDem834k01ag+jLVXfXhdMZiG2C/sSagrCUCXAqWRXb6mW57RdG2HaK5dd13XsLqkqVtNF3frdZt8PXB7LI98XU0iX6pAo0Ps9v00ziNvhu2UHB2Jl3EERMJh5ysQr61JOFj8Z2bbDSn6+qoR+fCf2e8v4fVqCT86u/r04fS5KM3HFBgXOhW0iyCfBAwK+IdzEEHd7/+mo8rusBT3uXLPl6/e9e2q3psRTI9W4J6eQ/BBffbMWFwDjeka6NmmZVpNvW6QhqHpTaPRIFjTHbfh4qZuNr4eAmSG6oTJegWw/LTtMUrhEs/kNrQYmJVi8IWSHkGctZUQQiFlMBeij3nUZ+g2RwTQCtFVj4R4hRJgrt3y/rAMMCYZYC7Nml7OZU175fdKxUvWozfQ3/wPUEsHCGNiCthzBwAAsy4AAFBLAQIUABQACAAIACJ5Rj+n0xb2Bw4AAAIOAAAtAAAAAAAAAAAAAAAAAAAAAAAwMTRkMjljNWJlMGM1NmNjYzI0ZmU5MTQ5Y2FmNjY1ZVxBY2h0dW5nMS5wbmdQSwECFAAUAAgACAAieUY/Dw5ZqeoFAABCBgAAKgAAAAAAAAAAAAAAAABiDgAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wUEsBAhQAFAAIAAgAInlGP2NiCthzBwAAsy4AAAwAAAAAAAAAAAAAAAAApBQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAO0AAABRHAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
 
<br />
 
<br />
 
<br />
 
<br />
Zeile 17: Zeile 188:
 
'''Man sieht: a + b = b + a'''
 
'''Man sieht: a + b = b + a'''
 
<br /><br />
 
<br /><br />
<ggb_applet width="592" height="265"  version="3.2" ggbBase64="UEsDBBQACAAIALpy3j4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7ZxbU9s4GECft7/C44ed3dkCviQhzJLuECgtLZS2oXSmLx3FVhIVX4ItQ+DXr24OcRScKORie8qLiaXI0jmf5MgXHf438j3tDkYxCoOWbu4augYDJ3RR0G/pCe7tNPX/3rw67MOwD7sR0Hph5APc0u1dS6f7E/Tm1R+H8SC814DHslwjeN/Se8CLoa7FwwgCNx5AiDP7QTJCHgLRw2X3F3Rw/JTACzkLhgk5Co4Sss/x3XMUpx/32AGHHsIn6A65MNK80CFVP2jo9L9rGGHkAK+l1wyD7bFaulU3Molkl01TB2GEHsMA0+xPhXugCz0CoIMfPKhpdzTV5kk9klnTYvQIyREtuu9wjzE4hInjIReBgLaTVZFk0rR75OJBS68fWORoEPUHpBlWQ5TmhGHkdh5iDH1t9ANGISm0uduoW+a+fWDaRs2uHTR17YEnWTbTE5P6k6Nb+9mMNJ9IqhskHzsAvOtAjElTYg2MYJwC7UfIHROnH87idug97RqGKMDHYIiTiMWBLXYxIC2dVCKiLTkK+h4U+0jznAF0brrhqMPp2Lzoq4ch+wqrT7d/HHphpEVUSZ1kENsu37I8tKLjXAbLY7Acogxa6DjdpFz7YtvlW+4QBbxqouFm2mrTSA+DYo3uoEhJ+KZsmPyWrmtJgPB5+oFEzY1oqcnzf0r8Luk2k3EzLtJMixQ8ly7zcG8qrA5vYBRAjwdPQMwmYRLzCOXHYhVxoYN88pEnCCKA2vpGKsD3urAfwbTivNNxXizVmAzQqd2He2klaB1iUlcHk9GDtAfTttDOjUnHov+5ANM9tHt40Iek72AWDiyaxlyO9PEYErLhYBrcRNNIhpnBwcIIeMMBIHvS8PfAAxkeJhvECrwI3WwzQUBwsTaQrjikBVAhQwi5SyxCWBuSAlmHmKgQQxRrI35Y7YEOjaQqj3wwZVl436HDwdNQQsxyIoyi74PA1QLgk+Ock8hlQBAdAzVgUEAaMFv66IgEmMCQ4DQR8OJEIRJq2hHGIIGe7Rt4QGIwgHHMOjCe7KoZHZmusYANY3kXMk826hGeOxTs3sINgLcBzxPzPoZ8cs5wEM6n/5lFZhY/kJi385lnw7u9ZHibFh8h2bYYIW7tGoZZ37dsa9+o1QxasWUCPo/WcXVo1ZYdEPL4nFSHT2MdfN5Xh09zHXzeVYePufQZNw/QaYUAWesA9LZCgNYyRJ9VCNBaxugPFQK0lkH6Y3UAWWsZpM8rBGgtg/TFPEBPly1KMaWurXhKfZE3pe4qTKm7S06pVW2sa0pdW/uU+jLCg7AfBsCb4aGd58FR8OCUycOOKUQYQoQ8sd6qleM8K66CFbfUVmrjsrbk4STPA1TwAEvtobFtD+/zPPQUPPRK7aG5bQ/v8jz0FTz0S+3BNLYt4jRPxEBBxKDcIqxti3jLRci3KJCCBFRuCVs/TZ/l9YZfCiJ+lVvE1s/TH/JE3CiIuCm3iK2fqD/mifAURHilFmFt/UR9nifCVxDhl1vEJk7UZwGGUUxaPeWgyx04Ev9P+fyzV/Q+LXdFr1FjcOmmyzcvx/vcYwAvukg3h54r0btUoXdZHHpP95zWyQtKvD6r8PpcHF6NjfDqSby+qPD6UhxezY3w6ku8vqrw+locXuaK7jLMATaQgHVUgHUKBMzaCDAkAbtSAXZVIGCbGfJ/ScC+qQD7ViBgmxnzbyRg1yrArgsEbDODvicB+64C7HtxgFmbGfR9CdgPFWA/CgRsRYN+B/bp/tm3gT9JuIJ8XLEoLeURlOsBd9PI/h1kJq07xq6VnWjZ9oomsYyxR5+8GAcwCgP5TZIbCIf0DZ7L4CoCQUzf/uJ5Jt5QURIt7ixfSqKHaqKHFRNdy6bbjbKLFreuP0uib9VE31ZMdCOTbK7q8ZuteRa3xr9IniM1z1HFPDez6ftl9yxuvX+VPMdqnuNKeR7/CCqvWHErvyOJxWpiccXEWplkq1l2z+JJgSvJM/hpqpmmX6iWa/tg8q9Z+h9f4oGEb5LrrqrrbuVcV+0HmHjm4Vpy7ai6dirnOvsjrFb62bN4rOK75NpVde1WzPXq7u9vTa54VOOHJBeqyoWVk5v9MVb6fizePjqSVPdUVffKpXpnnuvVPTC1FrlwNIxITeh7bem0B46wqWskoaX/eZuE+F+Db9hXs/JoXj37xXwta31cqodG0M02VSxwFcMI9Z7W8GLrOe0Q9nG6/hPLCrpx6CUYdpwIwuA8dPj7fvz+HZO6by3Gz8rwsxbnZ1WUHwH3DL8MjyDxyZGcp2cEEjZoiCGB1CwRNT7YnTsC5KEy67YEy1wQlsgXe2ypNh8Foq/7YMTrpc3mkFZPLKBGRg2al8bWfvoSo1mn/zENY9jPrOi2yGAy/coqX21tkVdW1Q1ZKzOUrqMmh3MBDNULaUgag45+piP4X+Mu9Fqzd+t/p4WK27LykDS1ktnPeSN67ol2Vj9b+lR7sPRr5RKftszHeq2RuqnyaS/L5/kofzGf8UPzy/M5nhE/2j/aBKslYum4QKxesMqFBOtkRjBNwDKXCqyTAnW8MSz1yMpbdWdWCxda82J1T4MUap3Ea0IgjKYvctPgYlOrn6Y0uUryp1Z3vMCUZvL8vGp/NfOqtQz3i02kplswsdCn+JHqgAjDGIFANBGTz2xxRN5336YTVSU97VTPyQw9d0p67n7rydHTXkrPUarneIaeeyU992vUs4EfA2vWczRPz6xlSGe/w3U674rR1Op2808js+cZBVw5yVj2PLtAVzhNu0J7Rle4AEEvgnPWQZnqEOl3fneL57vFqdwtZl8wsjMXjD4SAwkm8XTXhzHEjxqdxx65LqIRtvjFJPvFF5Ms4wU/rp69clQbXzgy5194qzFflsRxb3Kpbvo5XdH/zf9QSwcIzNA0OHgIAAADYAAAUEsBAhQAFAAIAAgAunLePszQNDh4CAAAA2AAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAACyCAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocaljar = "true"/>
+
<ggb_applet width="596" height="258"  version="3.2" ggbBase64="UEsDBBQACAAIAJ14gT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Z1bc5s4FMefdz8Fw8POdnaTcPMls3E7cdK02aZNW6fpTF86Msi2Gi4uiMTpp19dwDYWwRYxtvFs+oCRhND5/44OCIF68mriuco9DCMU+B1VP9RUBfp24CB/2FFjPDhoq69e/n4yhMEQ9kOgDILQA7ijmoeGStNj9PL3306iUfCgAJcVuUXwoaMOgBtBVYnGIQRONIIQZ9JBPEEuAuHjdf8HtHE0y+CVXPrjmJwFhzFJsz3nCkXp7hE74dhF+BzdIweGihvYHdVokKaTX7cwxMgGbke1NJ5iiJkkyaS5oyBEvwIf0+Kzyl3Qhy4RoIcfXago9zTX5FkDUlhRIvQLErEMmnZyxDQ4gbHtIgcBn9rJmkgKKcoDcvCoozaOm+RsEA1HmLamyWuzgyB0eo8Rhp4y+QbDgFTaPmw2DL1lHuumZpmWpSqPPMcwCZ3j2T+dqEtMIQ0xWtlj2uSYJKuhEaLsXPC+BzEmVkUKmMAo1XYYImcqPt25jLqBO0saB8jHZ2CM45C5hJkkMW06KtEwpEad+kMXJmkGITaC9l0/mPS4UCav+uZxzA5h7ekPzwI3CJWQ6tEgBZJtn29ZGdrQaSmNldFYiaQOWuk0Xz82WAm27fMtx4l83rTEcD21WtfS06BIoQmkcurJqTbMDzqqqsQ+wlfpDnGgu8RSnZf/EHt90oPmXWhapZ5WmehZus6TowUPO7mDoQ9d7kc+IRsHccSdlZ+LNcSBNvLILs9IFAGU1hfSAJ7qwGEI04bz/sf1YrnavK8uJJ8cpY2gbYhIW21MAgmxB1NbaD/HpI/RXw7ANIX2FBd6kHQjzNyBedNUl1N1Gk4CFhkWhZszjRTIdQ7mRsAdjwBJSd3fBY8kUswbxCp8HzhZMwdoAh2eMqPJbI+UCa9PeaThj5zjFw+YrAjvFLTLz8IFQcZNZfJ4HvAdxQceMfqKuCSzFNE4pwCNWq4AvaNOTonnJPbFOM0EvLqkEkFD6uFThYCadXo8Is7lwyhiPRPP98GMzhmfX0FmrbzIop7swkP0PKDCHq1sAPzp8zIR7zzII9cFG+Fi9T8yl8vKDwTNu8WaZ/22W9JvdYOHPrat2HeNQ03TGy3DNFqaZWn0jGU8uUiGsxrIYJXtwkWGn9fA8GYVhr+tgeHtKgx/UwPD9dKXqyLLL+pguVGF5a/rYHkl8e2yDpZXEuD+rYPllUS4dzWw3Kgkwl3VwfJKItz7ZZbPmrLd4Ze15uHX+6LhV19i+NUvOfySlbmq4ZdV+fDrOsSjYBj4wM3h0C3iYEtwsOvE4UBPQGgJCHGstlUqZ0VUHAkqTq2pWNO6tsThvIgDlOAAa82huW0Ob4s4DCQ4DGrNob1tDm+KOAwlOAxrzUHXtg3iogjESALEqN4gjG2DeM1BiI+zkQQEVG8IW79MXxb1hh8SIH7UG8TWr9P/FoG4kwBxV28QW79QvysC4UqAcGsNwtj6hfqqCIQnAcKrN4hNXKgvfQzDiFi9wKDPGdiC/h+K9c8+qvtQ7lFd02Li0k2fb54v71Mzy896SLdEPUdQ71pGvevdUW82YVOlXlDQ66OMXh93R6/mRvQaCHp9ktHr0+7o1d6IXkNBr88yen3eHb30Nc0yLBFsJAjWkxGst0OCGRsRDAmC3cgIdrNDgm0m5P8QBPsiI9iXHRJsMzH/ThDsVkaw2x0SbDNB3xUE+yoj2NfdEczYTND3BMG+yQj2bYcEW1PQ78EhTc+fBv4gyOUXyxUltaV6+PV6GVrXsn/HmUHrgXZoZAdaprmmQSzT2H1E/nDqwCjwxc8J7iAc0884rv2bEPgR/Roo+7aGLOhkZvlaAD2WAz3eM9BWNt9s1h10MnX9UQD9Uw70zz0D3cxk6+t6/WZrnJOp8U8C51COc7hnnNvZ/FbdOSdT758FzpEc52ivOE9vguoLNpnK7wlgsRxYvGdgjUy20a475+RNgRuBM/iuy5GmB+wXa/N4/q9d+5uv5IWELwLrvizr/t6x3rcbsOSdh1uBtS3L2t471tmbMKv2o+fktYqvAmtHlrWzZ6zXN7+/NbjJqxrfBLhQFi7cO7jZm7Ha9+Pk66NTAfVAFvWgXqgPlrFe3wtTlcCFk3FIWkLXPEmHPXCCdVUhGR31j59xgP/R+IYdmoVHy6rZA4uxVPq6VO63d2zBowiGaDBb04kt6nNAtI/SRYBYUdCPAjfGsGeHEPpXgQ3YWjB8/o5BbRmr6Wdk9DNW18/YU/2IcE/ol9HDjz1yJnv2jkDMgkYSEkjL4nRO5nBpBCiSSm+Yglh6oVjXg0EEMQvuzJIDK1fJpJLIZet6echPAoEHyJHH9Fe+SGnbk9W2SEihZanjtdIvHPl8FWOUln5i9a9VAg3wkcfxRBiOkw8oozGEfMmntKwyJnqwdbOmAUaenrFIzypLL11oS3T1YnobAdTcRUBCeDr9ngb3P6e962/FPGy8SCtNZmzFaLWw0tX3ZcG+8Bqc1wVLX4XN0p+SC/p0RX2MvxXSNll9umX1edrJn/2G5vR9+vL6nOX4j/KXMqdVCV862yGtWuvzpfMcX5rTSi/lV+c71O9apf2qaJGaPANXWr5ifa+JLEZfeoFZLfpWsNjeLVEgCBefflPfYmOu77ow6oqLx1z3vMJUzfjpAVdrPQOuSoL9aiOsRQvmloFM7l5tEGIYIeAnJmKyz1bY4133dTqClcLTTfGc5+C5l8Jz/z+eAjzdUnhOUzxnOXgepPA8VIhnA7cCFeM5XYYnby3L/I+7LpY9SlpY5W35ZSR/kLHJRZC0shfQFXz8IvXxbo6Pvwf+IIRLVj5Z8PT0mP/9/Wl/vxD9Pf8RkZl5RPSOEIgxueO4H8II4l8KHZ2eOg6i9yCrPz4yn/34yNCecdck9wDJmj4/0pc/f7MYRGNFca2MuLnjFEXpKDx7/o6c/J4mCrnGLHHu2Pxh0Iu8G3mBl/WcO/lqnvcVQWjojEJ7haEPta6RSyEzAsqlYBRS0IspZKpfjUKjlhQMTcBwNL+GOd1P/9eDl/8BUEsHCD2W7mbcCAAAJ2EAAFBLAQIUABQACAAIAJ14gT89lu5m3AgAACdhAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAFgkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
<br />
+
<br /><br />
<br />
+
'''Und hier kannst du das Assoziativgesetz besser verstehen. Ziehe die Schieberegler!'''<br />
'''Und hier kannst du das Assoziativgesetz besser verstehen: Ziehe die Schieberegler!'''<br />
+
 
'''Man sieht: (a + b) + c = a + (b + c)'''<br />
 
'''Man sieht: (a + b) + c = a + (b + c)'''<br />
 
::&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''(a + b) + c = a + b + c'''
 
::&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''(a + b) + c = a + b + c'''
 
<br />
 
<br />
<ggb_applet width="662" height="331"  version="3.2" ggbBase64="UEsDBBQACAAIAOhy3j4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Z1pc6pKGoA/z/0VlB+mZmpuclhca5JzS82+J2apypcUaqskCAYw26+f7maJ2C36EpFl7vniEQjC87zddDfNy85fH2NdeEOWrZnGbknaFksCMnpmXzOGu6WpM9iql/76/cfOEJlD1LVUYWBaY9XZLSnbcoksn2q///jHjj0y3wVVp5vca+h9tzRQdRuVBHtiIbVvjxByQsvV6Yema6r1edl9Rj3H/l7h7uTYmEzxrzjWFC/rjftnmu1//UV/cKJrzp72pvWRJehmDx96o1oi/7tHlqP1VH23VBZFukTeLckVMbQSL1LI2pFpaV+m4ZDNv3euq12kYwAd51NHgvBG1iruqgHeWBBs7QvhX5TJsp1flMEOmvZ0ra+pBjlPeoh4I0F41/rOaLdUrcr415A2HBF2csPdW880rX7n03bQWPh4RJZJTmO7WpGlmtKQFLGslGu1kvDprpIbMtFj4+PHvy7XwhvW8XbeqoqIt6M/gN46yHHwqdiC+oFsH+jQ0voBcfLl2G6Z+veiiakZTludOFOLxoHiLaJAdkv4ICxyJk1jqCNvGT693gj1XrrmR8elo7i7vv2c0D+hx9Mdtk3dtASLKKngDbzPrvtJtyEHGmwl0m1EuoW3D7LTYL3UkOkW9LPrfroONcM9NO/EJf+sJdH/Gc0WyAKCFIevz4bK3y2VhKmhOWf+Fxw1L96ZSu72F9NxFxeb2bgJdin5u/R4xt7nzq+5sNp5QZaBdDd4DGx2ak5tN0Ld36IH0kc9bYy/uis8IiqxdYcPwF3aR0ML+QfuFjqXF10rzgbo3OKdX/5BkGOw8bH2HFx74PNxyLmQwu3ggkX+11cdsoQUDx2NES47Dg0HGk0Bl2YpqENMWh3Mg5s5NbwBNzhoGKn6ZKTiJX746+onrh5mT4ju8Nzsh09TNTAueg64KE7IDoiQCUKuS8cLYWGCd0gLxMwBUUS28OH+rPBJqkZ8KF9uZUo3ccsOqQ6+qxJs1iVCKY7HqtEXDHWMf+cMRy4FopE6UFBFAkhQpd3SRxMHmIdh6vgrVXd33k4Y1KQgBCDVUrhsOCMcgwaybVqAndmiGtIRKhor2BDju2B50osS5rlFwP5a+QTQq+FuY7tlTBvja0ZPc6LpX9HIDONXGeataObh8G7FDG9JdmtI+pmNEMcXIFGq1GRFronlskgOLE7AR9FqF4dWOW6FEMVnrzh8qknwOSoOn3oSfA6Lw0eKfcWNAnRQIEByEoD2CwQokSr6uECAEqmjTwoEKJFK+rQ4gOREKumzAgFKpJI+Xwboe9giF13q8pq71OdRXeouoEvdjdmlhtpIqktdTrxLfWk5I3NoGqrO8dCK8tADeOjlycOW5IkQPRFsxzpVK+0oK32AlX6urZSDfaXkYS/KAwJ4QLn2UE3bw1GUhwHAwyDXHuppeziM8jAEeBjm2oMkpi3iIErECCBilG8Rctoi9l0R7C0KDSBBy7eE1C/Tx1Gl4Rkg4jnfIlK/Tp9EiXgBiHjJt4jUL9SnUSJ0gAg91yLk1C/UZ1EixgAR43yL2MSF+thwkGXjs55z0HUd9Bj+F9H8wyN6F/FG9KplCpd8dN2Pn+NdNA3gR4N0S+j1GXqXEHqX2aH3fc8pSV6I4XUF4XWVHV7VjfAaMLyuIbyus8OrvhFeQ4bXDYTXTXZ4SWu6y7AE2IgB1oEA62QImLwRYBoD7BYC7DZDwDZT5T8zwO4gwO4yBGwzdf4LA+weAuw+Q8A2U+nrDLAHCLCH7ACTN1PpjxlgjxBgjxkCtqZKv4OGZDn/NvAFg8uIxmV7e/N5GPma4C6J4X+NUKd1S9yWwx0tRVlTJ5Yy1snMiyCANdNgnyR5QWhCnuC5NG4t1bDJ01/uNjNPqIBEe3eWLxnRE5joScFEl8PrlWreRXu3rq8Y0a8w0a8FE10NrZbWNf0mNc/erfFrxrMF82wVzHM9vL6Wd8/erfcbxrMN82wXynPQCMqvWO9WfocR68DEOgUTK4dWy/W8e/ZmCtwyntUnCWaa/EGxXCuN2X/13De+vAkJd4zrLtR1t3Cui9YA8+Y83DOue1DXvcK5DjfCyrnvPXvTKh4Y132o637BXK/v/n5qcr2pGo+MXASViwonN9wYy3059p4+ajKqB1DVg3yp3lrmen0TphKRiz4mFj4S8lyb3+1BH45UEvCK3dI/X6em81/R/aB/GpZHti2F/zBaS6LTpWguKxtZ2uA7XRdN3bSFMdt+qie6qdq1TX3qoE7PQsg4M3vuo33urTr3iTKFfTyRy0oOsZJXZyXnn1VN9liVGVahczemY/xTve97/1NaGXhFHR/X1Du6YJ5nPCxSRWHASCuC8bazdZqCbawZXhkeq/4UFD4I//C8xGi4NiDbkhtMineDqUbvlg+0D/KsqLvxgjxtq1QR8w+i0pmBKz2ICvcjz/upxvXjZ0djA3ctfqpx/FTKWRbEVDbNJ79a/ldQfv4UlO3Kv/2devda2bpnLj3Z07JqOvLqyStka5jbBX1WnOHTYvnIfwr42KB8Wjw+Kz2NvzjKfzxZMJgKHx9QmxNAwn+EGVgxgqkdN5gSYPWD7CcMrD1ONM3AkmJF1t5PYa217AW44LEVlU0ndulZ3yyPTOU/vMcETGt+8JqEF+0yPUlMp2ka3WV6c3fo05wu7i9J4no6TIlU+av1kJhTmEnh6bVTe6rlIFtTDe8cHfydpj10y+++3wUFCWr5gvY4gt5Agt7iCgIkDc21oVYsQ03fUJtj6B1k6D3JIrSBRkHSgprLBPGyjPIf0TpYNiA0l7xu+dWE3+HIYGIkMe7ldoXCcOAXhhanMJyrxsBCS9KczBUJ/2+SrLoKUDIO2JLBHyZSQsNETds2vzQcUm9DZCPnSyB92ma/r5EgW30ISfnxEJIs/qCZtXAQqRyMIUlLx5DkstvIijmEpKxtiGLRyFpqAxTlSs0foFDyMEBxuKR/OfN/JVb36TB212Lt4/5y7Mqc5XYE4hajj36UQW5JdKra/kXwiHMR/AJd/r6S71Tl+KrXjtVg3/P1HPL6vMvahfO93qj7hH8r8rutsCb7G6PlGNZcP146wJWb1vqFekGF0c+kWuvcwQVgSXhLtiRsZugxjXZ6VELnuN3OUNs6/SD+zo9aW/c7XE78GH7jxPBwWQyHk9flbs6HR7UcTOgpJ/Iql8iU2oUL0eq6Q/Q0KkRHoBAdxQ7RdPIFcUIU9yHDs8ITCFhAIqeLxWo0kBotZ2qCa99WkMypvi3KsogbP7V6VaoqKSdLvlxs5hlk5jn3ZiqpZwC8WizjBSTjJfcy6qnnxbxeLEMHydBzL0NKP1XszWIbY5CNcf5tlFNPzNhZbMMA2TDyb6Oaer7S28U2JiAbk/zbaKR+Eb9zbUw5Nl5BNl5zZqM6LyN9F/eLXVggF1beXUhi6tXUQ1Q2Xxukw86ZjuylVn6MkuGAZDh5l5FmeuWhP2ylceqoM9gNmbO4o4RJpFxTGvK2ItalWlUSxapcb/hTPxT2Ur2erHUBymfetCgYyvMsoazVg7nuG6D3wqF3AaN3kSV6Eg7BDeLTOfguYfguM4WvUq0nj2/s4xty8F3B8F1lCl+jKiaPz4jCdw3Dd50lfLJSkZPHN4nCdwPDd5MpfLXyBi4dr1H4OjB8nSzhk5QAn1SuMSPT66FnRdG7hdG7zRS9SpBrPTl6dhS9Oxi9uyzRk+v+dYPONwi/K2w97JwodvcwdvdZYqeI9aTZjXx2DofdA4zdQ0bZsZMIkiAZlOARh+QjjORjlkjOlODNkAxi0uKQbD7JEJLNJ07KkixcSZT6djWRK8lrVBy2YPRamaI304pJjN4kil4bRq+9nF7iT5Xz29By8P6AxHpwPH57MH57WYq+2R5ccvjGUfj2Yfj2s4RvdvwgOXx6FL4DGL6DTOGbGb1KDt9LFL5DGL7DTOGbGTtNDt9zFL4jGL6jLOGbGbhPjp4WRe8YRu84S/QW3UH6OcoFuYh9kKcckOoykGyecTlzzzlcDgY2ctxenjs9QGqs5iLnmS9XymDr6/fKzFzqcaD+bqb1b7m5HFcsiPBXPdVy/8KBcz8ajjjR0INGQy+D0fD3K59Cwi++H1hmhfehwvuFE160Nw9c+r4POL4R1DcqnO+ivQLqyve9z/E9gPoeFMx3AV4Fdf39nD0reAgVPCyc4KK9EurG993m+B5BfY8K5zvcQpOlvPvu+L5bHN8a1LdWON9Fa6Dd+r6bHN/PUN/PhfNdtAbane/7kfv4M9D3S8F8F+AVUfe+4AfuI9VAwXrhBOfoNVH8tKfluG8SKuf/7Tjem4Rkd0B9OatK3DcJVfLPynuT0EqsTp5kzotQSIoraGLME969rZTT4v80VRc34VxwH+uE03A6V8cx0kOPf5Ie+v/k1QMnnKxzTDifcsJ5cfrXOGF+GnvylCTKiWWATSjQZf+GLRvo78tmjs6/FiDqKdafB3gCcIM5kZuLcHneEqZr2Pj8aaOCfB8ic4i6lvr7f1BLBwg9opMQLQ0AAJ27AABQSwECFAAUAAgACADoct4+PaKTEC0NAACduwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAGcNAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
+
<ggb_applet width="660" height="341"  version="3.2" ggbBase64="UEsDBBQACAAIAER4gT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Z1Zc6s4Goavp38F5YupOdUdHxB4q0lOV/blZLeTVOUmhW3ZJsHgAM7260csso0lg0XAIKZz4xhkgd7n0y592v77Y6wLb9CyNdPYqUhVsSJAo2f2NWO4U5k6g61m5e9ff2wPoTmEXUsVBqY1Vp2dilwFFff6VPv1x7+27ZH5Lqi6F+Reg+87lYGq27Ai2BMLqn17BKETuq5OPzRdU63Pq+4z7Dn2/IYfyakxmaKnONYUXeuN++eajb/+9B440TXnQHvT+tASdLO3U6nX0Kuj/+6h5Wg9Vd+pKKJ/BexUwNJNdEl2745MS/syDccNPo9cV7tQRwK0nU8dCsKbe1f2bw1QYEGwtS+IxALute2fngbbcNrTtb6mGm46vVdEgQThXes7I/R2dfdpUBuOXO3klh9bzzStfvvTduBY+HiElokibVYlpSnXZaXeasgSkBsV4dO/BZqtarNRa8lSvQZqkiQheVFa0JuARhWIjXqjUVcU0BLrDRn9KLintKpSqw4aQGmIIgCKpPjPhm9t6DgolbagfkAbaz20tP4Mhvvl1N4z9fmliakZzr46caaWZyJycMnTaqeCUmm5idw1hjoMrgFEcAR7L13zo+0LJ/tRdz4n3k+89+kO903dtATLpVVDAYLPrv/phXFfdBZK9MKIXoggDjfS2X2pBbwQ3mfX//Txaob/akHCJZxqScSP0WzBvYAidy0ba+PZxU6lIkwNzTnHX5BBvQQplfzwl9NxF+WoRZOaRSnhKAM9E8e5/XPJ4rZfoGVA3bcrA5GdmlPbN17/Wd6L9GFPG6Ov/o1AEdWldYdewL/ah0ML4hf386Ovl3dXXLTdpcvbP/FLuO9go3ftOahgQelx3LS4+d5Bec79r6867hU35+hwDFG2cjxz8KxppstuZVa8mF5JsSzcQtJQAKpxeGak6pORiq5URZzHP1HJsZggL8ILsx9O5kD7gH3/ypyml3Zb+PDjEz7d4hA948svQL0gfqZwi4B58YGQ+Un15BmPVaMvGOoYJfocmaSXUs0t9wRVdFMuqNJO5WMXWU6QvqmDb6p+dEEkhIauhc8UUitho3dGyLgMaNteznQW82BI55DNryGzmFxkUk+vIkJ6brnC/lw7AfDV8MPYfubRxqie6GlOtPrXnsmF5VcJzfeiNQ/b7V5Cu5WAX/R5nxnbLqiKolRrABk0REUR3ScmseQoGfY5kEFJmoWjEn7AQcLrWST8hIOEN7NI+DEHCZcSV1dRKT/iIeUgi5Qf8pDyTMq3Ux5SnkkBd8ZDyjMp4X5zkHKQSQl3zkPKMynhLuJSPn+VfLtfSsrdr4uo7leXofvVTdj9YpU5q+6Xknn368pyRubQNFSdwmEvikOPgUOPJw5bUgBCDECQfbVcqexHUekzUOlzTUWZxZUTh4MoDpCBA+SaQz1vDidRHAYMHAZcc2jmzeE4isOQgcOQaw6SmDeIoygQIwYQI75BgLxBHPogyOFsjQGCxjeE3Kvp06jc8MwA4plvELnX02dRIF4YQLzwDSL3ivp3FAidAYTONQiQe0V9HgVizABizDeITVTUp4YDLRuleolB12fQI/S/jNY/PFR3mWyorq544rofXf/j+/Kumln+1iBdjHp9Qr0rFvWuiqPefMImS70godc1i17XxdGrvhG9BoReNyx63RRHr+ZG9BoSet2y6HVbHL2klGYZYgQbEYK1WQRrF0gwsBHBNEKwDotgnQIJtpki/5kQ7I5FsLsCCbaZMv+FEOyeRbD7Agm2mUJfJwR7YBHsoTiCgc0U+mNCsEcWwR4LJFhKhX4bDt3r9GngS0IuI1ouO4gN62HwtRhaEsN/rVCndUusgnBHS5ZT6sR6GuufmjGcGbBmGuR2ghcIJ+42jiujY6mG7e4OCq/WYAUdzCxfEaAnbKAnJQOthO/Ldd5BB1PX1wToVzbQryUDXQ/dltJafpMb52Bq/IbgbLFxtkrGuRm+3+CdczD1fktwttk426XiPGsE8Qs2mMpvE2AdNrBOycCC0G3Q5J1zsFKgQ3BWnyQ20u4PysVabi3+NblvfAULEu4I1l1W1t3SsS5bAyxY83BPsO6xsu6VjnW4EaZw33sOllU8EKz7rKz7JWOd3vx+bnCDpRqPBFzICheWDm64McZ9Pg52H+0SqAesqAd8od6KY53egqlM4MKPiYXexPV5grs98MORKgK6sVP59+vUdP4r+h/eT8Pw3LCV8A+jsWS6XIq6985zgGRDSxvMfTx5Tn22kPY2dgLkBVW7tqlPHdjuWRAa52ZP9XzB+PN3/jYzmdyMSBUQhAQE6wsISipgAwQCKoSAIUGM6Rg9qjdfJTD1io2gUECvNg1eebZGOplWUk0m1JIi1boaDGzoeHm+4aVlq0nVMojF1j1XX2PNCMqCsYqXstBlwi8fOOBCpYob1p2okoOJqoY36+5BwoFX+ANbp6hRDW3s87EdOAm2UNoTCH2nTzisMEF6eJ6zZkUMOz2wTE9OSg+72iJtPZremnzqSfjUlCIDIsqn3SdcvP9nlrv+EuRq7QeONJizJYurJV9XT3HFfWQtTMuCKaxBZN1MTuizR+oD/hLQu7Hqs0fTZ619+KutPLFAuBCZLalPLtA+xYCEP4UFsRIY035SY8pAq0Z6xnRAMaYFraREhnXwXa1SzXqNxJYV5akmcd5Jb63IZlzp3aOkmdby2LZrNl6P6kki+lTT6B7Vmx8hlmm6ujslien0p1IwpzV9nq3XqyLSteD7MWix9lTLgbamGkHCHfTdc6vnZ9ZD3G1loraHqR1QqL0xUXtLSo3B22T5sO0lwraLse1TsL0zYXvPMrOlVtPFUFtuKmRNbTeOGs3fJX0D2FHccNOSJ7j4WobeDdmkoyQxaf26hukfYdPfo5j+hWoMLBjjHWUpA+DfZFl6lTUfHJH5gD66JIdGl3Zt2/zSUE/xbQht6HwJbr92t9/X3L7j+iNP8rdHnoCYdmNr5diTMht6kmKHnoDiN9MSjjzJy2MXs5mZtEbpchu5UGq47d6QeRi5OI7peC78LyfqWB0n7nWkPrHQSq+/fsIkW4K++0nxZMuiU7aPK8sTSmX5xVRNfmXfKcu6dgQbrh33E7XtDzCzY1pHOq61uNyVjpqb/IcbndtBktb9G8HqlK1lf8pDyz7xmCxLy546FsFo+G/ZGn6Kw5Ixii+PVebRpI/y1ZzUakPN8A30RaVqI+3zQ86wwb5RDHYYZ7BhZ3jcrSEJWuGzhX6gmonH1Ehv2fzYXj1t2/sdZXsjJtsbJba9fBwLkbYnVWtKaPl4BobI4PDpcjUZjYmMxhkZXFdtLfoFlFDvvQ6aLVlsSo20lvUnJHO1mswzE5ln3smA3P3TXa9m8cLE4oV3FkruLkxvVrPQmVjovLOo5e5A83Y1izETizHvLBq5u25sr2ZhMLEweGfRzN3Db2c1iwkTiwnvLFq51913PosphcUrE4tXzliAZRZy7nX3/WoWFhMLi3sWudfdD1Gufm0mGjZnNIrnd/kxCobDBMPhHUaevpeHeKhKoxRR52yTJOdJh/yy8Mfm1sONwP2y6yLMX7XRrOGRZqWVbLgvVshn2tInNiEviiSk1MLOJjcg3gtFvEs28S6LJB5oKZsTT6eId8Um3lWRxJNbIHPxxli8IUW8azbxroskntISMxfPiBLvhk28myKJV2s2MxdvEiXeLZt4t0USr97MvsJ4jRKvzSZeu0jiAYArDPRPben8pnS0s6K067Bp1ymUdjWQtXZ2lHZ3bNrdFUk7SZnNh3uLBbwh3nS1c6K0u2fT7r5Q2s12bGem3Qhr51C0e2DT7qGg2pELBTIQcpaBRxQhH9mEfCyUkPMMvBEhZxZpUYTcfQIsQu4+UfyUFKAWkati2PFhJnXKa5RJ7rEpuVcoJedtmc0oOYlScp9Nyf14JTPfMU5tU4vVZsa9OZp6B2zqHRTJDhd6c5mJN44S75BNvMMiibcwjpCZeHqUeEds4h0VSbyFEazMxHuJEu+YTbzjIom3MHaamXjPUeKdsIl3UiTxFkbtMxNPixLvlE280yKJt2Lu6NtCrnBQjGX8TZFRjZORdD4OCrdZYe7rTg5WBUit9Uhw7g5zLbe2GH+QY5b8kTPi7xYa/5bvtnHNbMh+/lOD+1MILp5mm4JJa+ixWkOvgNbwzzlQIeCX8x3FJPA+K/B+6YCX7TiCK8z7iMIbsvKGpeNdtnOhrjHvQwrvASvvQcl4l+B8qJv5zngS8JAV8LB0gMt2TtQt5r1P4T1i5T0qHe9wCw1IvPNuY957FN4aK2+tdLzL1kDrYN67FN7PrLyfS8e7bA20O8z7kbrZmZH3S8l4l+DcqHsM+IG6g5oRsF46wBydHUX3X6okPV5IKenpOMHxQsAfZY8XsJb0eKFaSQUMjhdaS8CzJ0A5/8T1aMXq9/KMNgeW8wEo3/XMRXUmN5vxOqM0sS7UcQI30ePvuIn+fz6a4IziUo6w8d8UG1/t8jWJ7f9OvNxKEkFWXl8zMn6Ap3tJ43+PW4G6fEBA1N7X7xt9atrGGH1t40YP4o2+Q5xcGGv7wo7gh1w8kwf9P7tI3AWRd+X5xYWY4/PgD1qGC9XenTVOV8zBr2xEnSwHZybWxPXQgZXoqEcnyT/Wh7cqgixhfatpsHFYoBnsw1mjcukQRxDQNfuxKqetDp5Xzoo7/KBgsPwuoQzqy7BQNWTYKA6v7+Z+H0JzCLuW+ut/UEsHCMrcpuTUDQAAOb8AAFBLAQIUABQACAAIAER4gT/K3Kbk1A0AADm/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAADg4AAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true"/>
  
 
</div>
 
</div>
Zeile 34: Zeile 204:
 
</div>
 
</div>
 
&nbsp;
 
&nbsp;
AUFGABEN:
+
 
 
<quiz display="simple">
 
<quiz display="simple">
 
{ Forme den Text in eine Rechnung um, rechne es dann aus und gib das Ergebnis ein.  
 
{ Forme den Text in eine Rechnung um, rechne es dann aus und gib das Ergebnis ein.  
 
| type="{}"}
 
| type="{}"}
 
'''Beispiel'''
 
'''Beispiel'''
Die Summe der Zahlen 228 und 368 wird addiert zur Zahl 368
+
Die Summe der Zahlen 228 und 454 wird addiert zur Zahl 368
 
(228+454)+368=1050
 
(228+454)+368=1050
 
+
&nbsp;
Addiere zu der Differenz aus 450 und 302 mit 169.
+
'''a.''' Addiere zu der Differenz aus 450 und 302 die Zahl 169.
 
={ 317 }
 
={ 317 }
Addiere die Summe der Zahlen  155 und 71 zur Zahl 24.
+
'''b.''' Addiere die Summe der Zahlen  155 und 71 zur Zahl 24.
 
={ 250 }
 
={ 250 }
  
 
{ Achte auf die richtige Reihenfolge!
 
{ Achte auf die richtige Reihenfolge!
 
| type="{}"}
 
| type="{}"}
 +
'''Beispiel'''
 +
(5 + 5) - 2 = 10 - 2 = 8<br /><br />
 +
  
 +
'''Aufgaben'''
 
(13 + 17) + 25 =
 
(13 + 17) + 25 =
 
{ 30 } + { 25 } = { 55 }
 
{ 30 } + { 25 } = { 55 }
Zeile 58: Zeile 232:
 
32 - (13 + 8) =
 
32 - (13 + 8) =
 
{ 32 } - { 21 } = { 11 }
 
{ 32 } - { 21 } = { 11 }
 +
 +
68 - (36 - 22) =
 +
{ 68 } - { 14 } =  { 54 }
 +
 +
82 - (15 + 34) =
 +
{ 82 } - { 49 } = { 33 }
 +
 +
{
 +
| type="{}"}
 +
 +
58 - (30 + 18) =
 +
{ 58 } - { 48 } = { 10 }
 +
 +
(58 - 30) + 18 =
 +
{ 28 } + { 18 } = { 46 }
 +
 +
(82 - 15) + 34 =
 +
{ 67 } + { 34 } = { 101 }
 +
 +
(82 + 15) - 34 =
 +
{ 97 } - { 34 } = { 63 }
 +
 +
(80 - 32) + (42 + 60) =
 +
{ 48 } + { 102 } = { 150 }
 +
 +
 +
{ Rechne geschickt.
 +
| type="{}"}
 +
 +
100 + 56 - (14 + 56) = { 86 } <br />
 +
 +
75 - 44 - ( 15 - 14 - 30) = { 60 }
  
 
</quiz>
 
</quiz>

Aktuelle Version vom 23. Oktober 2013, 00:03 Uhr



 

II. Addition und Subtraktion natürlicher Zahlen:

1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme


Erklärung





Zum besseren Verständnis kannst du auch noch einmal selbst das Kommutativgesetz erproben. Ziehe die Schieberegler!
Man sieht: a + b = b + a



Und hier kannst du das Assoziativgesetz besser verstehen. Ziehe die Schieberegler!
Man sieht: (a + b) + c = a + (b + c)

     (a + b) + c = a + b + c



  Aufgaben

 

1. Forme den Text in eine Rechnung um, rechne es dann aus und gib das Ergebnis ein.

Beispiel
Die Summe der Zahlen 228 und 454 wird addiert zur Zahl 368
(228+454)+368=1050
 
a. Addiere zu der Differenz aus 450 und 302 die Zahl 169.
=
b. Addiere die Summe der Zahlen 155 und 71 zur Zahl 24.
=

2. Achte auf die richtige Reihenfolge!

Beispiel
(5 + 5) - 2 = 10 - 2 = 8

Aufgaben
(13 + 17) + 25 =
+ =
45 + (27 - 8) =
+ =
32 - (13 + 8) =
- =
68 - (36 - 22) =
- =
82 - (15 + 34) =
- =

3.

58 - (30 + 18) =
- =
(58 - 30) + 18 =
+ =
(82 - 15) + 34 =
+ =
(82 + 15) - 34 =
- =
(80 - 32) + (42 + 60) =
+ =

4. Rechne geschickt.

100 + 56 - (14 + 56) =
75 - 44 - ( 15 - 14 - 30) =

Punkte: 0 / 0



II. Addition und Subtraktion natürlicher Zahlen:

1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme