Lösung c)

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

f_{1} (t) = \frac {2\cdot e^{t}} {e^{t} + 29}

Um den Flächeninhalt in dem Teilstück, welches der Graph G1 mit der t-Achse und der Geraden mit der Gleichung t = ln29 \; einschließt, muss man das Integral mit der oberen Grenze t = ln29 \; und der unteren Grenze - \infty bilden.

Zu beachten ist hierbei, dass ein Grenzwert benötigt wird, der gegen - \infty läuft, da man - \infty nicht für t einsetzen darf.

Graph-facharbeit10.png

A = \lim_{a \to -\infty } \int_a^{ln29} \! f_{1}(t) \, dt =

= \lim_{a \to -\infty } \int_a^{ln29} \! \frac {2\cdot e^{t}} {e^{t} + 29} \, dt =
= \lim_{a \to -\infty } \int_a^{ln29} \! 2\cdot \frac {e^{t}} {e^{t} + 29} \, dt =
= \lim_{a \to -\infty } 2\cdot  \int_a^{ln29} \! \frac {e^{t}} {e^{t} + 29} \, dt =
= \lim_{a \to -\infty } 2\cdot  \left[ln(e^{t} + 29)\right]_{a}^{ln29} =
=  2\cdot [ln(29 + 29) - \lim_{a \to -\infty } ln(e^{a} + 29)] =
=  2\cdot [ln58 - \lim_{a \to -\infty } ln(e^{a} + 29)] =
=  2\cdot [ln58 - ln29] = 2\cdot ln(\frac {58} {29})= 2\cdot ln2