Quadratische Funktionen/Übungen1 - Quadratische Funktionen/Übungen2 - Quadratische Funktionen/Abschlusstest - Quadratische Funktionen/Übungen3
Übung 1: Wie war das Wetter?
Die zulässige Höchstgeschwindigkeit beträgt innerhalb geschlossener Ortschaften 50 km/h. Unter idealen Bedingungen sollte ein Pkw in einer Gefahrensituation rechtzeitig vor Erreichen der Gefahrenstelle bremsen können. Der Wert der Bremsbeschleunigung aB und damit die Länge des Bremsweges ist aber abhängig von den Straßenverhältnissen. In der Tabelle sind einige Werte für die Bremsbeschleunigung eines Pkws auf einer asphaltierten Straße bei unterschiedlichen Witterungsverhältnissen angegeben.
Ordne dem gegebenen Bremsweg s die passende Bremsbeschleunigung aB und die Straßenverhältnisse zu.
Tipp: Du kannst die Übung durch Rechnen, mit Hilfe des GeoGebra-Applets oder durch Nachdenken lösen.
s = 13 m |
aB = 7,4 m/s2 |
trockener Asphalt
|
s = 18 m |
aB = 5,4 m/s2 |
nasser Asphalt
|
s = 80 m |
aB = 1,2 m/s2 |
Glatteis
|
s = 37 m |
aB = 2,6 m/s2 |
Neuschnee
|
|
|
Straßenverhältnisse
|
Bremsbeschleunigung aB in m/s2
|
Asphalt trocken
|
6,5 bis 7,5
|
Asphalt nass
|
5,0 bis 6,5
|
Neuschnee
|
2,0 bis 3,0
|
Glatteis
|
1,0 bis 1,5
|
|
Übung 2: Lückentext
Die Graph der Funktion f mit f(x)=ax² heißt Parabel . Ist a = 1, so heißt der Graph Normalparabel.
Quadratische Funktionen liegen symmetrisch zur x-Achse.
Der Punkt S (0;0) heißt Scheitel .
Für a>0 gilt: Je größer a ist, desto steiler ist die Parabel.
Für a>0 gilt: Je kleiner a ist, desto weiter ist die Parabel.
|
|
Übung 4: Multiple Choice
Kreuze jeweils alle richtigen Aussagen an.
f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)
f(x) = - 0,5x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)
f(x) = - 2x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)
f(x) = 0,2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)
|