Lösung d)
Aus RMG-Wiki
< Facharbeit Mathematik Straßheimer | Die Aufgabe
Version vom 26. Januar 2010, 21:02 Uhr von Straßheimer Florian (Diskussion | Beiträge)
Durch die Funktion für (t in Tagen) kann das Wachstum von Sonnenblumen beschrieben werden, wobei die Höhe (in m) der Pflanzen zur Zeit t bedeutet.
Berechnen Sie die Höhe einer Sonnenblumenpflanze nach 10, 50 und 150 Tagen
Da der Graph der Funktion das Wachstum einer Sonnenblumenpflanze in m beschreibt, wobei die Variable t die Zeit darstellt, muss man lediglich t in die Gleichung einsetzen und erfährt die Höhe in m nach der verstrichenen Zeit t.
Höhe nach 10 Tagen:
Höhe nach 50 Tagen:
Höhe nach 150 Tagen:
Berechnen Sie, wann die Wachstumsgeschwindigkeit einer Sonnenblumenpflanze am größten ist
- Die Funktion beschreibt die Höhe der Sonnenblumenpflanze in Abhängigkeit der Zeit t (hier rot zu erkennen)
- Die 1. Ableitung der Funktion beschreibt die Wachstumsgeschwindigkeit in Abhängigkeit der Zeit t (hier blau zu erkennen)
Wenn die Steigung der 1. Ableitung gleich 0 ist und an dieser Stelle ein Maximum ist, ist die Wachstumsgeschwindigkeit am größten.
Daraus folgt die Bedingung:
Dies gilt für den Wendepunkt, der bereits in Teilaufgabe b) berechnet und liegt bei