II.1. Addieren und Subtrahieren: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K (Erklärung)
Zeile 8: Zeile 8:
 
<div style="border: 5px solid #1D17AE; background-color:#FFEC8B; padding:7px;">
 
<div style="border: 5px solid #1D17AE; background-color:#FFEC8B; padding:7px;">
 
==<colorize> Erklärung </colorize> ==
 
==<colorize> Erklärung </colorize> ==
<ggb_applet width="474" height="306"  version="3.2" ggbBase64="UEsDBBQACAAIAGp1Rj8AAAAAAAAAAAAAAAAqAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wxZOJO9R5AMa/85vjN/exJDlzjntG7kxkzAwzjKYxxpFjUDIYx04xaBGraNJESM08kupR06hNbUW1bHSwHiqUDmlXtmM72J6OFY9t/4p9n+f9vM/nD3hrRVFhJLwZHgBA4odzxN/W8VvpWOQ3SnqHAgBAAlGkhPtNEQgECglgFECj0QQ0wKIRBAzAwwgcBknEAAKBQCKRKBSKMQlaRQTWFGBGgyy+g6hUqrGxsYWFhQ0N2KxA2pogHYwA3Rg4rwDuJsDZDMUwBe4WKC8zwDSHfMyBnwXwsYL8LcFaK+BvBa21Rq6zBn526EAb9Fp7NGs1IsgeF+SEDrEB620QbFvAswM8e8CjQzw6HOqC4bpieG6YcHsgcARCOhAw4CgnEOmMjnJDClzxke7kSCZmA5MmckGI3TFiD1QsA0pgIMTesNQTFeMLb2SSxZ6UBCZi0xpk0hoozg+bEIBNDsRu9DIW+5hE+5rKvKEtvpDMH50RgNrCwsjWYTOCsVkstGIdKjcIlchjpvC9MtbjctbDCjas4ODyeHglF97ORhdyMPmh2HwerjAMWxiBL+ZhSsPhMj5czMeq+DiVAFciJJRGEcpEBA6HIxAIhEJhljQkJ56TlxiWn8QvSo0oToso3Souz4opz03cGQnv3gBXRRNqRHBtLHFvNE4jwdZJcBopThOL12wiNmwiHkwmNiWTdEn41mR8q4ygSyW2Z5A75OSOLPJpOVGfSTqZSdZnk/U5lM5s8tlcSlce+Vw+5ed8cs82ygUl9fI2ak8h9VoR9RcVtbeYVpEdU6GIq8xL7CumXi+h9e+gDZTSBnbQNBX5DVXbtHXl2n3lbfvL9Y1larVaW1eh3Veh0+xsra860lDd3lRzvEXdodXoWxtOtzUajjb3Gg71XuzsvXjmeve5kVt9o4PX7wwN3Bu+8eDe8OTYyKOJ0SeTY8+eTM5MP/577t2H+bnl5WXwv+YIujUEAGiJzwmRqB79IFGEGxWYlr/bonxaqFD2HPTuit9Mo6GkPGdUQo0gL4NhGpImk1P5Ls8JmT+8inCmcavR3LKXap64LbX6dFD4SOWd2TXbzaMLlNrzV85feZt7ZUpHyfnMWl7O633xtiiUh4BGSlLKunE7/T/0ZDdd+jgIbjv5ZzVfPnZVnQWGZuXpS7x7FUimUWw34UaSHUEphZqD158vWKkc5c2xyj40NT7Y8OXZUcQ5iUgbMTa1ZIIRIV0Et5lRffhP9WMM+rzHeMSv1URObOEh0a02wOXfdl2duuTQdnWS7vRoqBm7/KblOGw/qPL4cXdBg0PLzOv20qr5uoWwy657K1bG4ReXmu2qEOaGtJnox6KWhTcYwxUYUsd/KoubYI3UhWqm5gC9AO8WzA+X9W46GPrx1DvlBJsdkRq8NdLJdASi1qaa4rrSZEViXamRkIjcIl+Vz6y859aJ6P+0KwO+s5IrXKSxsob7S1NUk7vDv6YgC9WM5494lf3T/R1Illva2NALfZud93L3YZc5la1fjsIjASu5yK7Yrgu7Hfcw1WZl5sHWKq57erEjv1xVSA18fexm4mvh6gyjQw8N7i8XT3ycPuVWfMDymAv/K+xYnkj50pKbbmJAeGmn8rPrLcOYsfjoWt8e8+lTz1oT6jzYu0+ymeyBk5WkF7PgpvmgavOok40ipBYpvdDrdU13Ytiqfvz+ALZ+129n775aYVvgKSxwJxb9NNvPCpQuTNnJO+Tf2wjOXyp9KJTvXFXSNHhkcAx1MfP+2C6M3x2nqeULVrRZ4qX9+jiT4ymeqreiP2Ww99et/fQ94/tf6rvf6z4v5iF3PVlH7lgYxxkYVMdsh/bAiRWf5q9dvXFJt9macI0V3xl1dSH9/qogxei+pIE9MzM7/NcoNDHhSR+g9/GddwNO/mV/OvZC5h/TJkI1W5WnR/9uedzQNRl82C6GP9/VaM2Qa2s9qj19hqSxZw3FT++OvEIsRlZtdM3YF1Mj/bq3tbF/D+2A5B/rpwkzyqONrn3/HYLPjeKcYcsq/wVQSwcIDw5ZqeoFAABCBgAAUEsDBBQACAAIAGt1Rj8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vrbbts2GL5en4LTgCJBa0cHO7ZXu0UOTlqgWwqk60WxG0r6LXPRwZWoxM4T7EEG7A12tbu+yZ5kP0lJluJD7Npp4wYIJJK/yJ/ffyA/0t1X48An1xAnLAp7mlHXNQKhE7ks9Hpayge1tvbq5ZOuB5EHdkzJIIoDynuaVTc1UZ+yl09+6CbD6IZQX4p8YHDT0wbUT0AjySgG6iZDAF6pp+mY+YzGkwv7D3B4Mm1QnbwJRykvKp3AfcsSLPM4Be1AjjjyGT9l18yFmPiR09MOm6g7vn2AmDOH+j2toasas6eZdxqxyhKtwyhmt1HIhfi0c5/a4CMCl3ziAyHXotVSTQMUJiRht4BomaKueyBB6ELq+MxlNBQTlSqiECE3zOVD1KXVwNGAeUMBnt5UvTlRFLuXk4RDQMYfIY5QsHkojDBRJcuQJklQZRywqcumckl2A9eXwDkqnBA6himYXszcSuFNchz506pRxEJ+Qkc8jaW9raxKzrun4VixUPgo9HzI6ky0xhCcKzsaXyoQLNX1+8lIfiIVsr2TyI9iEgvkmyiQPW31lDJC00JKlzK6lMj6EJ0W7UbHlBLyaaunMhULlWrZzI181oaeD8MSIioEjOimxeSlkXuaRtKQ8bd5Ab3jKpuqoT74NQ1sjI+yfxR9Gtvqs3twx326VxCH4CsnCdG2aZQmyhPVWFIRFxwWYFE1ZJBQYa7fUAFV64IXQ664ii4FmGzVy454p7p7kCshdEhQV4djmsD5cDEXEcUcA0i8uZSLGhEGYwz5RKSTHA0OY47zxoae9vRTGvEXR67LIIbwZ1WUY4EPAWBscelH4hut2kGRZyKZMjLsCpnCONg8162kA1J/NKRYk0eOTyeYP8pIyP5+idwqPgM2BlfVTEeSuSCBmA2m+U7GxCG+5PZW2YrTmL8ToaVg2BvvHe2TZ0SvG8/JRLzX8L25X1LhYjBIgJOxDLlJT6sZmZ8onGYQk4FbwHE0C1fVRUtOVAbM0M1KtMryVkGTnpaIedXa9Y6cWqPexlFu1fIjhVQWEvlzmnsrU5/rZOYcJ+MkoCGhAflIhz4IJ8bnc/L0J0N/kUTEhhvwlEzCnKEQvJQiuApyHyOJhBSrY3CGPPlxdXc1V3ZXjCyXybAS0heZ8HivH1/5n/+KbfzfJ089/oKM9073yX9//k3uNvqy8UQ1TuZ8Ocm/vNvoy8aj/VlHyNN2npK/UuQ01oicZhE66DfzQweDRjrY/f5zrFX7b9d11f2+Vg2wWeNXI+/4CyNva6mqFGB6vaNX/hpbi7eTRXihOUxhjvVQO3n8qJmIWqXa2hTD0zKGm6B3+ojQy5P6pnA5UYBZ2cX8G+B830X+xItCOU8muAGhuljlCDVk7FJTuiS1BBhqninPxUb4saFEqRK1laiDjwbukNTY2YhzsFZj52Cq7qqbTz7EPV6I5pXLNS/vhRcvAovW4KZVXYNFubCMsY5lFm8XEvBEqdCFfrMJLXe1mVx+uJofKqbU09riiX5Xs9r1Zv7tKrOET6GSydYjFiDjdBgvvMufIGd6E3Lcx4PcF89uz68ARoIXXYTvYxomgjtXV8LV7WM/UvssMYGZmUDPTGDU29W82tpdczi7Z448Imp5SJgmRkTZHjOUenfs4e6ePWp346NmtOrt3TFBdQtS4hX3UJ8t70WmC0RbotlZhj4NWUAV2eIwUsspSUYA6iwnh5eMcDB5IlZStrLHaWcb6c7h0l2NuRpxtSrE9SODIXEhJCVMyW0akPdDCOhz8vlfG4FwaULclNzgA+IBHcb4QfD5H+SpkPD66kzV2vhg5auRQ7Mgh9YScphtpJ8VrHA5/v0Fm/Dmupvw/mM4cpm7Ebe2zFvOppD1JWT9L+QtZ/dB9sCnenPQ0reO1nkZrSlT7q99snD+eNBaSJG3Dd7rReB9mcO9fvQQbup/q9DmvuLC54oLv1Zc+GwubTaVKChRT4kOFW0erE+bzYfcpi3Now9Em+GbTWhjHlAwY6P9/fAAb/fs8T3T5OHumWOWJt+NDmt37THYPXvsIE2ey/EaFY53mdrimnHdW/DGBmStaTzGa/B+6Rq8X74Gvx/R5gJEt3Pli751tc6Nb/NBbnz7y258z5dd6vaXXQef7daNb79849sv3/guTn0soN4U/RFz1JXNgGEmUJtjt2k1rEbHODShZepGx2y1gOqG7bQc2jGs1u/HCJlZt4ORUoyFx9S58uIoDd2ZDFHSOpQ/7pEQygmUj8ZWT1sbHaBNrWesa70vPyIr2+Kg/IMh+Ru57AeEL/8HUEsHCOxGhyC0BgAAcigAAFBLAQIUABQACAAIAGp1Rj8PDlmp6gUAAEIGAAAqAAAAAAAAAAAAAAAAAAAAAABkNTM0MzQ5MTYyZTcyMDE5Mjc3ZWEwMWJjN2NhOTEzN1xCw6RyMi5ibXBQSwECFAAUAAgACABrdUY/7EaHILQGAAByKAAADAAAAAAAAAAAAAAAAABCBgAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAkgAAADANAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
+
<ggb_applet width="422" height="306"  version="3.2" ggbBase64="UEsDBBQACAAIAOp4Rj8AAAAAAAAAAAAAAAAqAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wxZOJO9R5AMa/85vjN/exJDlzjntG7kxkzAwzjKYxxpFjUDIYx04xaBGraNJESM08kupR06hNbUW1bHSwHiqUDmlXtmM72J6OFY9t/4p9n+f9vM/nD3hrRVFhJLwZHgBA4odzxN/W8VvpWOQ3SnqHAgBAAlGkhPtNEQgECglgFECj0QQ0wKIRBAzAwwgcBknEAAKBQCKRKBSKMQlaRQTWFGBGgyy+g6hUqrGxsYWFhQ0N2KxA2pogHYwA3Rg4rwDuJsDZDMUwBe4WKC8zwDSHfMyBnwXwsYL8LcFaK+BvBa21Rq6zBn526EAb9Fp7NGs1IsgeF+SEDrEB620QbFvAswM8e8CjQzw6HOqC4bpieG6YcHsgcARCOhAw4CgnEOmMjnJDClzxke7kSCZmA5MmckGI3TFiD1QsA0pgIMTesNQTFeMLb2SSxZ6UBCZi0xpk0hoozg+bEIBNDsRu9DIW+5hE+5rKvKEtvpDMH50RgNrCwsjWYTOCsVkstGIdKjcIlchjpvC9MtbjctbDCjas4ODyeHglF97ORhdyMPmh2HwerjAMWxiBL+ZhSsPhMj5czMeq+DiVAFciJJRGEcpEBA6HIxAIhEJhljQkJ56TlxiWn8QvSo0oToso3Souz4opz03cGQnv3gBXRRNqRHBtLHFvNE4jwdZJcBopThOL12wiNmwiHkwmNiWTdEn41mR8q4ygSyW2Z5A75OSOLPJpOVGfSTqZSdZnk/U5lM5s8tlcSlce+Vw+5ed8cs82ygUl9fI2ak8h9VoR9RcVtbeYVpEdU6GIq8xL7CumXi+h9e+gDZTSBnbQNBX5DVXbtHXl2n3lbfvL9Y1larVaW1eh3Veh0+xsra860lDd3lRzvEXdodXoWxtOtzUajjb3Gg71XuzsvXjmeve5kVt9o4PX7wwN3Bu+8eDe8OTYyKOJ0SeTY8+eTM5MP/577t2H+bnl5WXwv+YIujUEAGiJzwmRqB79IFGEGxWYlr/bonxaqFD2HPTuit9Mo6GkPGdUQo0gL4NhGpImk1P5Ls8JmT+8inCmcavR3LKXap64LbX6dFD4SOWd2TXbzaMLlNrzV85feZt7ZUpHyfnMWl7O633xtiiUh4BGSlLKunE7/T/0ZDdd+jgIbjv5ZzVfPnZVnQWGZuXpS7x7FUimUWw34UaSHUEphZqD158vWKkc5c2xyj40NT7Y8OXZUcQ5iUgbMTa1ZIIRIV0Et5lRffhP9WMM+rzHeMSv1URObOEh0a02wOXfdl2duuTQdnWS7vRoqBm7/KblOGw/qPL4cXdBg0PLzOv20qr5uoWwy657K1bG4ReXmu2qEOaGtJnox6KWhTcYwxUYUsd/KoubYI3UhWqm5gC9AO8WzA+X9W46GPrx1DvlBJsdkRq8NdLJdASi1qaa4rrSZEViXamRkIjcIl+Vz6y859aJ6P+0KwO+s5IrXKSxsob7S1NUk7vDv6YgC9WM5494lf3T/R1Illva2NALfZud93L3YZc5la1fjsIjASu5yK7Yrgu7Hfcw1WZl5sHWKq57erEjv1xVSA18fexm4mvh6gyjQw8N7i8XT3ycPuVWfMDymAv/K+xYnkj50pKbbmJAeGmn8rPrLcOYsfjoWt8e8+lTz1oT6jzYu0+ymeyBk5WkF7PgpvmgavOok40ipBYpvdDrdU13Ytiqfvz+ALZ+129n775aYVvgKSxwJxb9NNvPCpQuTNnJO+Tf2wjOXyp9KJTvXFXSNHhkcAx1MfP+2C6M3x2nqeULVrRZ4qX9+jiT4ymeqreiP2Ww99et/fQ94/tf6rvf6z4v5iF3PVlH7lgYxxkYVMdsh/bAiRWf5q9dvXFJt9macI0V3xl1dSH9/qogxei+pIE9MzM7/NcoNDHhSR+g9/GddwNO/mV/OvZC5h/TJkI1W5WnR/9uedzQNRl82C6GP9/VaM2Qa2s9qj19hqSxZw3FT++OvEIsRlZtdM3YF1Mj/bq3tbF/D+2A5B/rpwkzyqONrn3/HYLPjeKcYcsq/wVQSwcIDw5ZqeoFAABCBgAAUEsDBBQACAAIAOp4Rj8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VprbttGEP7dnGLLAoGNRDIfkiU1UgI/ZCdAWgdwmh9B/yzJEbUVHwq5tCWfIAcp0IP0Jj1JZ3dJirQetiw5sWLAIDk73J355rEzXHXfTAKfXEGcsCjsaUZd1wiETuSy0OtpKR/U2tqb18+6HkQe2DElgygOKO9pVt3UBD1lr5/91E2G0TWhvmT5xOC6pw2on4BGknEM1E2GALxCp+mE+YzG0wv7L3B4MhtQk7wLxykviE7gvmcJPvM4Be1Arjj2GT9lV8yFmPiR09PMJsqOd58g5syhfk9r6Ipizg8iyRKjwyhmN1HIBftscp/a4CMCl3zqAyFXYtRSQwNkJiRhN4BomYLWPZAgdCF1fOYyGgpFpYjIRMg1c/kQZTFNXA2YNxTg6U01mxNFsXs5TTgEZPIZ4ggZm4fCCFP1ZBnSJAmKjAs2dTlUfpLTwNUlcI4CJ4ROYAamFzO38vAuOY78GWkcsZCf0DFPY2lvKyNJvXsarhULgY9Cz4eMhlo4Q3BGdjS5VCBYauqP07F8RQpkeyeRH8UkFsg3kSG72uoqeYSkBZcueXTJkc0hJi3GjY4pOeTVVldlKhYq0TLNjVxrQ8+XYQkRBAEjummhvDRyT9NIGjL+Pn9A7xhlqhrqhd/TwMb4KPtHMaexrTm7B7fcpzuCOARfOUmItk2jNFGeqNaSgrjgsAAf1UAGCRXm+gMFUFQXvBhywVV0KcDkqF52xFvk7kEuhJAhQVkdjmkC9eFCFxHFHANI3LmUC4oIgwmGfCLSSY4GhwlHvXGgpz3/kkb81ZHrMogh/FU9yrXAhwAwtrj0I/GOVp2gyDORTBkZdgVPYRwcXuhW0gGpPx5SpOSR49Mp5o8yEnK+3yK3is+ATcBVlNlKMhckELPBLN/JmDjEm9zeKltxGvMPIrQUDHuTvaN98oLodeMlmYr7Gt4390siXAwGCXAykSE37Wk1I/MThdMcYjJwCziO5uGqumjJicqAGbpZiVb5vFXQpKclQq9au96RqjXqbVzlRm0/kkllIZE/Z7m3ovpCJzMXOBknAQ0JDchnOvRBODFeX5Lnvxj6qyQiNlyDp3gS5gwF46VkwV2Q+xhJJKRIjsEZ8uTn+7ureW93xchymQwrwX2RMU/2+vHI//fv2Mb/ffLc46/IZO90n/z39R9ye9CXgydqcLrgzWn+5u1BXw4e7c87Qp6285T8jSKnsUbkNIvQQb9ZHDoYNNLB7vafY606f7uuq+n3tWqAzRu/GnnHD4y8raWqUoDp9Y5e+WtsLd5OluGF5jCFOdZD7eTpo2YiahWytSmGp2UMN0Hv9Amhlyf1TeFyogCzsov5N0B9P0T+1ItCqScTvQGhutjlCDVk7FJTuiS1BBhKz5TnbGN82VCsVLHaitXBSwMrJLV2tuICrNXaOZhqumrxyYdY44VoXrld83ItvHwTWLYHN63qHiyeC8sY61hmebmQgCeeClnod1NotavN5fLD+/mh6pR6Wltc0e9qVrvezN+9j5bwJVQ82X7EAuw4HcYL7/Kn2DO9CznW8SDr4vnyfAQwFn3RRfgxpmEieufqTnh/+9hP1D4rTGBmJtAzExj1djWvtnbXHM7umSOPiFoeEqaJEVG2x1xLvTv2cHfPHrXb8VEzWvX27pigWoKU+oo7Wp8t1yKzDaIt0eysQp+GLKCq2eIwVtspScYA6ltODi8Z42Lyi1hJ2EqN02pnlXTncGVZY95dBfaXVIHNdavA/lPo+RdWgtaWC+ezGWR9CVn/gYXz2V2QPfJnpQVo6VtH67yM1qxV66/d2p4/HbSW9mjbBu/tMvAe5nBvnzyEm/rfffq2vmrGzlUz9lY1Y2cL+zZTsYJi9RTrUPVtg/X7NvMx64SVefSR+jb4bgptXIgWrZnR/nEKUW/37PEj92nD3TPHfJ92Ozqs3bXHYPfssYN92sLTsUbldOwytcU517rHsI0NjmGbxlM8h+2XzmH75XPYuxFtLkF0O2eO6FujdY4cm49y5NhfdeR4vupUsb/qPPJst44c++Ujx375yHF56mMB9Wboj5mjzgwGDDOBKo7dptWwGh3j0ISWqRsds9UCqhu203Jox7Bafx4jZGbdDsZKMBYeU2fkxVEaunMZoiR1KH9dIiGUCpS/zdw/bW30BWdmPWNd6z38G83dEWtVIvYzgyEQF0JSQogEjCMtIB/ScMTJTUoA0QrIxyEEdI1wtDb+wco3iwCziABraQQUn6ZeLHT9g/IPhORv4rIfDL7+H1BLBwgqcMEqnQYAAGIoAABQSwECFAAUAAgACADqeEY/Dw5ZqeoFAABCBgAAKgAAAAAAAAAAAAAAAAAAAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wUEsBAhQAFAAIAAgA6nhGPypwwSqdBgAAYigAAAwAAAAAAAAAAAAAAAAAQgYAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAJIAAAAZDQAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
  
 
<br /><br />
 
<br /><br />

Version vom 6. Oktober 2011, 15:08 Uhr

 

II. Addition und Subtraktion natürlicher Zahlen:

1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme


Erklärung




Hier kannst du das Addieren besser verstehen, indem du mit den Schieberegler die Summanden veränderst.




Und hier kannst du das Subtrahieren besser verstehen, indem du mit den Schieberegler Minuend und Subtrahend veränderst.




  Aufgaben


Bewegt man sich am Zahlenstrahl nach links, so subtrahiert man. Bewegt man sich am Zahlenstrahl nach rechts, so addiert man. Demnach bewegt man sich bei 5-3 nach links und bei 5+3 nach rechts.

 

Rechne im Kopf!

1. Addiere!

122 + 9 =
23 + 64 =
70 + 39 =
71 + 97 =
40 + 23 =
46 + 108 =
65 + 95 =
48 + 89 =
109 + 66 =
118 + 64 =

Punkte: 0 / 0


1. Subtrahiere!

79 - 26 =
67 - 30 =
44 - 12 =
104 - 83 =
114 - 111 =
14 - 6 =
120 - 72 =
82 - 55 =
117 - 47 =
86 - 23 =

Punkte: 0 / 0


1. Addiere!

54 + 30 + 25 =
13 + 29 + 22 =
59 + 57 + 1 =
23 + 44 + 18 =
31 + 12 + 19 =
26 + 52 + 33 =
46 + 10 + 39 =
44 + 21 + 3 =
5 + 60 + 27 =
59 + 13 + 37 =

Punkte: 0 / 0


1. Subtrahiere!

35 - 9 - 11 =
53 - 39 - 4 =
17 - 4 - 3 =
52 - 5 - 7 =
40 - 16 - 6 =
60 - 22 - 27 =
20 - 6 - 10 =
30 - 2 - 10 =
51 - 29 - 15 =
87 - 17 - 23 =

Punkte: 0 / 0


1. Rechne!

34 + 17 - 1=
53 - 5 + 43 =
15 - 4 + 83 =
87 + 23 - 7 =
56 - 9 + 16 =

Punkte: 0 / 0


Für die Fleißigen

Wie viel ist 1010-101? (! 919) ( 909) (! 982)

Addiere 5777 zu 6845! (! 15622) (! 12672) ( 12622)


 


II. Addition und Subtraktion natürlicher Zahlen:

1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme