Lösung b): Unterschied zwischen den Versionen
(→Die 2. Ableitung:) |
(→2. Möglichkeit: 3. Ableitung) |
||
Zeile 83: | Zeile 83: | ||
Mit Hilfe der 3. Ableitung lässt sich sehr leicht herausfinden, ob an dem möglichen Wendepunkt auch wirklich einer vorhanden ist. Mann muss lediglich die 3. Ableitung an der Stelle des möglichen Wendepunkts bilden und schauen, ob die 3. Ableitung an dieser Stelle ungleich 0 ist. Falls dies der Fall ist, ist dies der eindeutige Beweis für die Existenz eines Wendepunkts. | Mit Hilfe der 3. Ableitung lässt sich sehr leicht herausfinden, ob an dem möglichen Wendepunkt auch wirklich einer vorhanden ist. Mann muss lediglich die 3. Ableitung an der Stelle des möglichen Wendepunkts bilden und schauen, ob die 3. Ableitung an dieser Stelle ungleich 0 ist. Falls dies der Fall ist, ist dies der eindeutige Beweis für die Existenz eines Wendepunkts. | ||
− | Die 3. Ableitung: | + | '''Die 3. Ableitung:''' |
<math>f'''_{a} (t) = 58\cdot a^{2}\cdot \frac {(29\cdot e^{at}\cdot a - e^{2at}\cdot 2a)\cdot (e^{at} + 29)^{3} - 3\cdot (e^{at} + 29)^{2} \cdot e^{at}\cdot a\cdot (29\cdot e^{at} - e^{2at})} {((e^{at} + 29)^{3})^{2}} =</math> | <math>f'''_{a} (t) = 58\cdot a^{2}\cdot \frac {(29\cdot e^{at}\cdot a - e^{2at}\cdot 2a)\cdot (e^{at} + 29)^{3} - 3\cdot (e^{at} + 29)^{2} \cdot e^{at}\cdot a\cdot (29\cdot e^{at} - e^{2at})} {((e^{at} + 29)^{3})^{2}} =</math> | ||
Zeile 92: | Zeile 92: | ||
::<math>= 58\cdot a^{3}\cdot \frac {29\cdot e^{2at} + 29^{2} \cdot e^{at} - 2\cdot e^{4at} - 58\cdot e^{2at} - 87\cdot e^{2at} + 3\cdot e^{3at}} {(e^{at} + 29)^{4}} =</math> | ::<math>= 58\cdot a^{3}\cdot \frac {29\cdot e^{2at} + 29^{2} \cdot e^{at} - 2\cdot e^{4at} - 58\cdot e^{2at} - 87\cdot e^{2at} + 3\cdot e^{3at}} {(e^{at} + 29)^{4}} =</math> | ||
::<math>= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{at} - 116\cdot e^{2at} + 3\cdot e^{3at} - 2\cdot e^{4at}} {(e^{at} + 29)^{4}}</math> | ::<math>= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{at} - 116\cdot e^{2at} + 3\cdot e^{3at} - 2\cdot e^{4at}} {(e^{at} + 29)^{4}}</math> | ||
+ | |||
+ | |||
+ | '''Möglichen Wendepunkt in die 3. Ableitung einsetzen:''' | ||
+ | |||
+ | <math>f'''_{a} (\frac {ln29} {a}) = 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{a \frac {ln29} {a}} - 116\cdot e^{2a \frac {ln29} {a}} + 3\cdot e^{3a \frac {ln29} {a}} - 2\cdot e^{4a \frac {ln29} {a}}} {(e^{a\frac {ln29} {a}} + 29)^{4}}=</math> | ||
+ | ::::<math>= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{ln29} - 116\cdot e^{2\cdot ln29} + 3\cdot e^{3\cdot ln29} - 2\cdot e^{4\cdot ln29}} {(e^{ln29} + 29)^{4}}=</math> | ||
+ | ::::<math>= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{ln29} - 116\cdot e^{ln(29)^{2}} + 3\cdot e^{ln(29)^{3}} - 2\cdot e^{ln(29)^{4}}} {(e^{ln29} + 29)^{4}}=</math> | ||
+ | ::::<math>= 58\cdot a^{3}\cdot \frac {29^{2} \cdot 29 - 116\cdot 29^{2} + 3\cdot 29^{3} - 2\cdot 29^{4}} {(29 + 29)^{4}}=</math> | ||
====3. Möglichkeit: Vorzeichentabelle==== | ====3. Möglichkeit: Vorzeichentabelle==== |
Version vom 24. Januar 2010, 12:26 Uhr
,
Untersuchen sie die Funktionen fa auf Nullstellen und lokale Extremstellen
Suche nach Nullstellen:
keine Nullstellen, da die e-Funktion nie 0 wird und somit der Ausdruck ebenfalls nie 0 werden kann
Suche nach Extremstellen:
keine Extremstellen, da die e-Funktion nie 0 wird und somit der Ausdruck ebenfalls nie 0 werden kann
Jeder Graph Ga bestitzt genau einen Wendepunkt Wa. Zeigen sie, dass die Wendepunkte Wa auf einer parallelen zur t-Achse liegen
Die 2. Ableitung:
Suche nach dem Wendepunkt:
(ln(e)=1)
Beweis für Wendepunkt:
1. Möglichkeit: Die H-Methode
Man nähert sich dem möglichen Wendepunkt mit Hilfe eines Grenzwertes an und versucht herauszufinden, ob ein Vorzeichenwechsel am Wendepunkt stattfindet. Falls es einen Vorzeichenwechsel geben sollte, ist dies der eindeutige Beweis für einen Wendepunkt an dieser Stelle.
1. Teil:
Da die Faktoren alle positiv sind, kann ein möglicher Vorzeichenwechsel nur von dem Term abhängig sein. Dieser wird nun im folgenden betrachtet:
Der Zähler ist größer 0, da gilt: ; dies liegt daran, dass der Faktor durch das Quadrat noch kleiner wird und somit der Term noch stärker gegen 0 strebt. Positiv ist der Zähler nun, da gegen 1+ geht.
2. Teil:
Da die Faktoren alle positiv sind, kann ein möglicher Vorzeichenwechsel nur von dem Term abhängig sein. Dieser wird nun im folgenden betrachtet:
Der Zähler ist kleiner 0, da gilt: ; dies liegt daran, dass der Faktor durch das Quadrat noch kleiner wird und somit der Term noch stärker gegen 0 strebt. Da jedoch nun die Kehrwerte gebildet werden, wird der Term größer als der Term Negativ ist der Zähler nun, da gegen 1- geht.
2. Möglichkeit: 3. Ableitung
Mit Hilfe der 3. Ableitung lässt sich sehr leicht herausfinden, ob an dem möglichen Wendepunkt auch wirklich einer vorhanden ist. Mann muss lediglich die 3. Ableitung an der Stelle des möglichen Wendepunkts bilden und schauen, ob die 3. Ableitung an dieser Stelle ungleich 0 ist. Falls dies der Fall ist, ist dies der eindeutige Beweis für die Existenz eines Wendepunkts.
Die 3. Ableitung:
Möglichen Wendepunkt in die 3. Ableitung einsetzen: