II.3. Terme: Unterschied zwischen den Versionen
Aus RMG-Wiki
K |
K |
||
Zeile 13: | Zeile 13: | ||
<br/ > | <br/ > | ||
<br/ > | <br/ > | ||
− | Hier kannst du durch Ziehen der Schieberegler sehen, wie Terme funktionieren: | + | ''' Hier kannst du durch Ziehen der Schieberegler sehen, wie Terme funktionieren: ''' |
<br /> | <br /> | ||
<ggb_applet width="620" height="427" version="3.2" ggbBase64="UEsDBBQACAAIALBtgT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Z3tdps4Gsc/71wFhw9ztrsTB4kX4zNx5zhpOpOZtGmbNN3TLz0YyzYNBhdw6vQC9gb2DvdKVm9gYzmAHDs2bD7UNhJC+v31PHpFPfltPvGVexTFXhh0VdDSVAUFbjjwglFXnSXDI1v97eVPJyMUjlA/cpRhGE2cpKvqLaiS6zPv5U9/O4nH4XfF8WmUWw9976pDx4+RqsTTCDmDeIxQkrvuzOae7znRw1X/K3KTeBHAErkIprMku+hOBpdejH8n0Qypx/SJU99LXnn33gBFih+6XdUycd7xt1sUJZ7r+F3V0NgV2FXhSiC+pJPQcRh5P8IgIdEXiftOH/mYwHXy4CNFuSehOgsa4siKEns/EKYFybWTYwrhBM1c3xt4TkAKSrOIIynKd2+QjHHuIHka8kZjXAwDWiw1NwyjwfVDnKCJMv+MohA/x2zZpq6bHc2yOtAyOqrywEKg2W4BHdoQQMMEmoVDYlwUnBFotzRL0zoWMDqmZesWvocHGZ2WZhttYMGOZUGgGezB6P4aJQkuYqw4cxTzwiujyBtk1MmPi/g09BeXpqEXJGfONJlFtILo/BIF1VVxESNSwl4w8hG/BrF8Y+Te9cP5NaOms6RvHqb0Fpqf/ugs9MNIiUgxTRyBf/bZJ41DMprF0mgcjcbgaZBEs3DQgTQG/eyzT6atF7Cs8YKDtNRASx/jxQq5gBMn9TplQytFV1WVWeAll+kPXJvueEkBi/92Nulje1quT1mSIE2S89w4zZPjlep2coeiAPmsUgVY2Vk4i1nNZc+iGRkg15vgnyyAE3GIWh9xBtjVARpFKM04s0bGi4ZqyxV35fLJcZoJkocY59VNsFvB5UlIWYjVJ9jgyLeBk5ArxGx8NEHYphJaHWhtyrj01My5hNRPrIJbKhqOsLZy0Grk+NOxg6+0tNTAH7DbWC4QTfBNOMgX0wkwLloGbKJTkgARZIrQgPvKhFdiZYqTpCaxlCUKKVbm7MHKA/GaODM/2L00CrMe4igWTgZry5hQjpOJEwyUwJng51ziukuReMQ9Ko5GECkO6KrzHq5iHMQsSQMdlhxPRIBNTCFD6ah560jGuBYGKI6pCSfLxpoTJGccFfTQNldD5Ek1wDyPCNjjygVA3wIWJ2ZW5k1wa+J6STH9d7Ru5vE7AvPTYub5Cn66YQUHkPlI+nkolRy2NA2YbajDtmYYGsnaJlW+iNdZk3gZmzqFIkKvmkTI2gWhP5pEyN4Fod+bRAhs3PYWIXrdKERwF4jOG4VoJ876olGIduKt/2wUop2467+ahAjuxF1fNgrRTtz1mzJEi+mMmgy1jS0Ptd8UDbX7EkPt/oZDbVk9djXUNnY+1L6KknE4CgPHX6PDaZEOroQObp10OAJcCI0LIQ6396rKWZEqAwlVBrVWxcjS2pMOr4p0QBI6oFrrYO1bhz+KdBhK6DCstQ72vnX4vUiHkYQOo1rrALR9C/G6SIixhBDjegsB9y3EORNCXLrwJETw6i3C3pvpiyJr+CohxNd6C7H3dvrPIiHuJIS4q7cQe2+o/yoSwpcQwq+1EHDvDfVlkRATCSEm9RbiORrqiyBBUYxLvaJBn2ngCvzfFvPPz+m93WxOzzIoXPLRZx9Px/vY5oAnTdKV0BsI9K5k6F0dDr3F6tMueSGB1zsZXu8Oh5f1LLyGAq/3MrzeHw4v+1l4jQReH2R4fTgcXmBLqwwlwMYCsGsZYNcHBAw+CzBPAHYjA+zmgIA9j8v/KgD7KAPs4wEBex6ffycAu5UBdntAwJ7H6fsCsE8ywD4dDjD4PE5/IgD7LAPs8wEB25LTv0Yjcn39MvBbAVdQjCvmqaU8gnptfAda/q+TG7QeaS2YH2jp+pYGsZSxT3ZeZBXYCwPxHZM7hKbk3Z6r4CZygpi8MMbiLL27IiU0X1m+EoSeygk9bZjQRj5ct+ouNF+6ficI/U1O6G8NE9rKBYNtbb/Zm858afy9oHMkp3PUMJ3tfHi77jrzpfcPgs6xnM5xo3TOOkH1FZYv5V8LwiZywiYNExbmgqFdd535ToEbQWfnC5BTmtzQLK31zvKfXfvOF9+Q8FHQui+rdb9xWjetA8b3PNwKWruyWruN0zrfCTNqP3rm2yo+CVoPZLUeNEzr7a3v701cvlXjsyAukhUXNU7cfGes9nbM3z7qCVIPZaUe1kvqozKtt7dhaifiovk0wjkhb7alwx40T4Cq4ICu+vO3WZj8qrEPemtePBJXzd9YLMtOt0vR069iFHnDxQlf9FCnI4w5Tg+BolGdfhz6swRduxFCwWXospf7iKI6YG+UaaAaK5hjBauzgvVnZXc4K1iNlZ5jdYOiCVKqA9OfDOxJ74AOvTka5C2pgKOVYQSlGNl2M8MQIOZ4BLMJfo67eCfWC2YoYC+k4VzNeG6B3ir1jutJAVNfYkV/ZaxAIaur4TBGCdtKQctyBNeS5KnEPj0Yb+IF6WaViUPuNcnX9ZzSAvAD67DPJXHn7HQ5VgkNeomqlMZ+5AC9Kp549Y1fugGz4hu/1TW8nvWTyBmvkdHcVMX0hDoTCD6iqog209CoquGShNqTJGzbdZSQdmx4t2VJwY3tkHksqBkbC3hEjjEkEuryEm5khJ10LV0zDlJBoTXqfUn7OH/PBPxFweV5kSbKNy6I7dLKKYBf1vR5JM4BXCfzxr1RffW9iapbGkRApwtAvKH5RdFbpiye03V4qvTUixqjzXcVpYDKDqcwywGdCYCUI2XhzzeidbYpra11cuQP76qA6jwaoX7gxYLFKf9U1rPbwBCzh+yxV71U04RXmB7BZxUPt29xCcJodXMRqXpkvH32BQgj7gXGsqH3PUtb7IsUDcGBVnkMvkDthsHAY34cx77ikRcPVH4eJb8qGe6K3ZlicZZaQ8hbQ7C+VyoO6s0V8YoH8QKSpfNn+RjAdaIExZ4TcGYJ/k1P7GQWcfpFGGyWn+65/hWo8zLVV6xm4+brIE8f0jZtACtY3Xlqdb01VncvZWr3W7Gv/fUrdm0P52X2sFagXipQ1hSsqvRdSqXvu1dpJy32c6nUE1US2/7Xi25S1k9a3+q/UI4V2NJoxwlHWdureqH8AzcTQLpj9fqJvfSt6oQHyXzGp9V+ipc68yJ3NnHxvz7qRe7qxtTUGqgCDsxamfwZI2XNBW66PXeKhV8cNbLxDL008Cc4r2rT7d4IBczqY0WZa7yxedBSI0qvzAGd6idhID1tDCwJhxuvyJsrvTR+L43Vg3R6tAWhZuvpH1a/p/NH9AzSMaE1omfSNV6jYy6i6ibfp3MgKwNmbgbXqD55a9Z/thsYhtx0t5WDZVWHZdUfFtQ0uXWUdg6WXR1WuwGwTEsOlp2DBSRW6Oz609K1jhytTp6WxBpdpwG0LEvOa5GO4TIuCSePb609LwNKLgCD/Go5kPDzoAHr5Ua7Lckrv2IOJFw9aMCauanrkrzyq+ZQZjvG05fM98+rI2uPRp6XhLvHt9ael2VI9iVA2qdfnpZnzPAonH1ZGrKnYXhcnoUtzeSmwS+Ubha8dihPb+MPfLFuBC+qUzaG2O2Icu3+Dy++dG7Qv3ayLQS22WYK3bbLlbwRtm0toT7K1Otm0CuaxU2FXV2F3OnS3Q7IP4pYquMNuLHAdjXEcAXxwmIyrpjxeTBAfA6yOuWytq3GlDXmwmGnImX9UcqPzApi5NK8y9rG+vIGNtvBY2jVcKcN5qqLPypy8CXuvdylsyf/X3l0nRsC0CvswLgRptt2ZAhPalYP3BDYjJ3eruh4rMe7QiXVfZ1dlO1zqGYjZZOBjbMRrplWsdeTnzj877//U73ml00d7gHtdhhC3nM0BT9zvPyf35Lf6X+e/fJ/UEsHCOWFHTxJCwAAbnsAAFBLAQIUABQACAAIALBtgT/lhR08SQsAAG57AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAgwsAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" /> | <ggb_applet width="620" height="427" version="3.2" ggbBase64="UEsDBBQACAAIALBtgT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Z3tdps4Gsc/71wFhw9ztrsTB4kX4zNx5zhpOpOZtGmbNN3TLz0YyzYNBhdw6vQC9gb2DvdKVm9gYzmAHDs2bD7UNhJC+v31PHpFPfltPvGVexTFXhh0VdDSVAUFbjjwglFXnSXDI1v97eVPJyMUjlA/cpRhGE2cpKvqLaiS6zPv5U9/O4nH4XfF8WmUWw9976pDx4+RqsTTCDmDeIxQkrvuzOae7znRw1X/K3KTeBHAErkIprMku+hOBpdejH8n0Qypx/SJU99LXnn33gBFih+6XdUycd7xt1sUJZ7r+F3V0NgV2FXhSiC+pJPQcRh5P8IgIdEXiftOH/mYwHXy4CNFuSehOgsa4siKEns/EKYFybWTYwrhBM1c3xt4TkAKSrOIIynKd2+QjHHuIHka8kZjXAwDWiw1NwyjwfVDnKCJMv+MohA/x2zZpq6bHc2yOtAyOqrywEKg2W4BHdoQQMMEmoVDYlwUnBFotzRL0zoWMDqmZesWvocHGZ2WZhttYMGOZUGgGezB6P4aJQkuYqw4cxTzwiujyBtk1MmPi/g09BeXpqEXJGfONJlFtILo/BIF1VVxESNSwl4w8hG/BrF8Y+Te9cP5NaOms6RvHqb0Fpqf/ugs9MNIiUgxTRyBf/bZJ41DMprF0mgcjcbgaZBEs3DQgTQG/eyzT6atF7Cs8YKDtNRASx/jxQq5gBMn9TplQytFV1WVWeAll+kPXJvueEkBi/92Nulje1quT1mSIE2S89w4zZPjlep2coeiAPmsUgVY2Vk4i1nNZc+iGRkg15vgnyyAE3GIWh9xBtjVARpFKM04s0bGi4ZqyxV35fLJcZoJkocY59VNsFvB5UlIWYjVJ9jgyLeBk5ArxGx8NEHYphJaHWhtyrj01My5hNRPrIJbKhqOsLZy0Grk+NOxg6+0tNTAH7DbWC4QTfBNOMgX0wkwLloGbKJTkgARZIrQgPvKhFdiZYqTpCaxlCUKKVbm7MHKA/GaODM/2L00CrMe4igWTgZry5hQjpOJEwyUwJng51ziukuReMQ9Ko5GECkO6KrzHq5iHMQsSQMdlhxPRIBNTCFD6ah560jGuBYGKI6pCSfLxpoTJGccFfTQNldD5Ek1wDyPCNjjygVA3wIWJ2ZW5k1wa+J6STH9d7Ru5vE7AvPTYub5Cn66YQUHkPlI+nkolRy2NA2YbajDtmYYGsnaJlW+iNdZk3gZmzqFIkKvmkTI2gWhP5pEyN4Fod+bRAhs3PYWIXrdKERwF4jOG4VoJ876olGIduKt/2wUop2467+ahAjuxF1fNgrRTtz1mzJEi+mMmgy1jS0Ptd8UDbX7EkPt/oZDbVk9djXUNnY+1L6KknE4CgPHX6PDaZEOroQObp10OAJcCI0LIQ6396rKWZEqAwlVBrVWxcjS2pMOr4p0QBI6oFrrYO1bhz+KdBhK6DCstQ72vnX4vUiHkYQOo1rrALR9C/G6SIixhBDjegsB9y3EORNCXLrwJETw6i3C3pvpiyJr+CohxNd6C7H3dvrPIiHuJIS4q7cQe2+o/yoSwpcQwq+1EHDvDfVlkRATCSEm9RbiORrqiyBBUYxLvaJBn2ngCvzfFvPPz+m93WxOzzIoXPLRZx9Px/vY5oAnTdKV0BsI9K5k6F0dDr3F6tMueSGB1zsZXu8Oh5f1LLyGAq/3MrzeHw4v+1l4jQReH2R4fTgcXmBLqwwlwMYCsGsZYNcHBAw+CzBPAHYjA+zmgIA9j8v/KgD7KAPs4wEBex6ffycAu5UBdntAwJ7H6fsCsE8ywD4dDjD4PE5/IgD7LAPs8wEB25LTv0Yjcn39MvBbAVdQjCvmqaU8gnptfAda/q+TG7QeaS2YH2jp+pYGsZSxT3ZeZBXYCwPxHZM7hKbk3Z6r4CZygpi8MMbiLL27IiU0X1m+EoSeygk9bZjQRj5ct+ouNF+6ficI/U1O6G8NE9rKBYNtbb/Zm858afy9oHMkp3PUMJ3tfHi77jrzpfcPgs6xnM5xo3TOOkH1FZYv5V8LwiZywiYNExbmgqFdd535ToEbQWfnC5BTmtzQLK31zvKfXfvOF9+Q8FHQui+rdb9xWjetA8b3PNwKWruyWruN0zrfCTNqP3rm2yo+CVoPZLUeNEzr7a3v701cvlXjsyAukhUXNU7cfGes9nbM3z7qCVIPZaUe1kvqozKtt7dhaifiovk0wjkhb7alwx40T4Cq4ICu+vO3WZj8qrEPemtePBJXzd9YLMtOt0vR069iFHnDxQlf9FCnI4w5Tg+BolGdfhz6swRduxFCwWXospf7iKI6YG+UaaAaK5hjBauzgvVnZXc4K1iNlZ5jdYOiCVKqA9OfDOxJ74AOvTka5C2pgKOVYQSlGNl2M8MQIOZ4BLMJfo67eCfWC2YoYC+k4VzNeG6B3ir1jutJAVNfYkV/ZaxAIaur4TBGCdtKQctyBNeS5KnEPj0Yb+IF6WaViUPuNcnX9ZzSAvAD67DPJXHn7HQ5VgkNeomqlMZ+5AC9Kp549Y1fugGz4hu/1TW8nvWTyBmvkdHcVMX0hDoTCD6iqog209CoquGShNqTJGzbdZSQdmx4t2VJwY3tkHksqBkbC3hEjjEkEuryEm5khJ10LV0zDlJBoTXqfUn7OH/PBPxFweV5kSbKNy6I7dLKKYBf1vR5JM4BXCfzxr1RffW9iapbGkRApwtAvKH5RdFbpiye03V4qvTUixqjzXcVpYDKDqcwywGdCYCUI2XhzzeidbYpra11cuQP76qA6jwaoX7gxYLFKf9U1rPbwBCzh+yxV71U04RXmB7BZxUPt29xCcJodXMRqXpkvH32BQgj7gXGsqH3PUtb7IsUDcGBVnkMvkDthsHAY34cx77ikRcPVH4eJb8qGe6K3ZlicZZaQ8hbQ7C+VyoO6s0V8YoH8QKSpfNn+RjAdaIExZ4TcGYJ/k1P7GQWcfpFGGyWn+65/hWo8zLVV6xm4+brIE8f0jZtACtY3Xlqdb01VncvZWr3W7Gv/fUrdm0P52X2sFagXipQ1hSsqvRdSqXvu1dpJy32c6nUE1US2/7Xi25S1k9a3+q/UI4V2NJoxwlHWdureqH8AzcTQLpj9fqJvfSt6oQHyXzGp9V+ipc68yJ3NnHxvz7qRe7qxtTUGqgCDsxamfwZI2XNBW66PXeKhV8cNbLxDL008Cc4r2rT7d4IBczqY0WZa7yxedBSI0qvzAGd6idhID1tDCwJhxuvyJsrvTR+L43Vg3R6tAWhZuvpH1a/p/NH9AzSMaE1omfSNV6jYy6i6ibfp3MgKwNmbgbXqD55a9Z/thsYhtx0t5WDZVWHZdUfFtQ0uXWUdg6WXR1WuwGwTEsOlp2DBSRW6Oz609K1jhytTp6WxBpdpwG0LEvOa5GO4TIuCSePb609LwNKLgCD/Go5kPDzoAHr5Ua7Lckrv2IOJFw9aMCauanrkrzyq+ZQZjvG05fM98+rI2uPRp6XhLvHt9ael2VI9iVA2qdfnpZnzPAonH1ZGrKnYXhcnoUtzeSmwS+Ubha8dihPb+MPfLFuBC+qUzaG2O2Icu3+Dy++dG7Qv3ayLQS22WYK3bbLlbwRtm0toT7K1Otm0CuaxU2FXV2F3OnS3Q7IP4pYquMNuLHAdjXEcAXxwmIyrpjxeTBAfA6yOuWytq3GlDXmwmGnImX9UcqPzApi5NK8y9rG+vIGNtvBY2jVcKcN5qqLPypy8CXuvdylsyf/X3l0nRsC0CvswLgRptt2ZAhPalYP3BDYjJ3eruh4rMe7QiXVfZ1dlO1zqGYjZZOBjbMRrplWsdeTnzj877//U73ml00d7gHtdhhC3nM0BT9zvPyf35Lf6X+e/fJ/UEsHCOWFHTxJCwAAbnsAAFBLAQIUABQACAAIALBtgT/lhR08SQsAAG57AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAgwsAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" /> |
Version vom 22. Dezember 2011, 13:46 Uhr
II. Addition und Subtraktion natürlicher Zahlen:
Erklärung
Hier kannst du durch Ziehen der Schieberegler sehen, wie Terme funktionieren:
Aufgaben
|
II. Addition und Subtraktion natürlicher Zahlen: