II.3. Terme: Unterschied zwischen den Versionen
Aus RMG-Wiki
K |
K |
||
Zeile 11: | Zeile 11: | ||
<br/ > | <br/ > | ||
<br/ > | <br/ > | ||
− | Hier kannst du | + | Hier kannst du durch Ziehen der Schieberegler sehen, wie Terme funktionieren: |
+ | |||
<ggb_applet width="639" height="346" version="3.2" ggbBase64="UEsDBBQACAAIAFl5TT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Z1bd9q4Goav9/wKLV/Mms5MiCUfgD2hs0iaznQmbdomTffqTZcxAtwYm9omJf31WycbjFxjkRCwc1HAkmXpefV9Olo9+XMx9cEdjmIvDHoabOkawIEbDr1g3NPmyeioo/35/KeTMQ7HeBA5YBRGUyfpaUYLafT63Hv+039O4kn4DTg+i3Lj4W89beT4MdZAPIuwM4wnGCe568584fmeE91fDr5gN4mXATyRV8FsnmQX3enwwovJ7ySaY+2YPXHme8kL784b4gj4odvTbIvknXy7wVHiuY7f00ydX0E9Da0FkksGDZ2Ekfc9DBIafZm47wywTwhcJfc+BuCOhho8aEQiAxB73zGhhei1k2MG4QTPXd8bek5AC8qySCIB8M0bJhOSO6NLnoa98YTCMy2emhuG0fDqPk7wFCw+4SgkYVarYxmG1dVtu4tsk9x2z0OQ1W5BA3UQRKYFdZuExKQoJCOo09JtXe/a0OxadsewyT0iyOy29I7Zhjbq2jaCuskfjO+ucJKQIsbAWeBYFB6MI2+YUac/XsWnob+8NAu9IDlzZsk8YhXEEJcYqJ5GgEa0hP1g7GNxDRH5Jti9HYSLK07N4Elf38/YLSw/g/FZ6IcRiGgxLRJBfA74J4tDM5rF0lkcncUQadBEs3DYRSwG+xzwT66tF/CsiYLDtNRQTx/jxYBeIInTep2yYZWip2lgHnjJRfqD1KZbUVLI47+ZTwfEnlbrU5YkTJMUPLdO8+R4rbqd3OIowD6vVAFRdh7OY15z+bNYRobY9abkJw8QRByq1geSAX51iMcRTjPOrZHzYqH6asVdu3xynGaC5iEmeXUT4lZIeRJaFmr1CTE4+m3oJPQKNRsfTzGxqYRVB1abMi59LXMuIfMT6+BWikYiFFYOVo0cfzZxyJWWnhr4PXEbqwViCb4Oh/liOgHBxcpATHRGE6CCzDAeCl+ZiEoMZiRJZhIrWWKQYrDgDwb31GuSzHzn97Io3Hqoo1g6GaItZ8I4TqdOMASBMyXPuSB1lyHxqHsEjk4RAQf2tEWfVDEBYp6kgQ5PTiQiwaamkKF0tLx1JBNSCwMcx8yEk1VjzQmSM44KeujbqyHzZBoQnkcU7HHlAuCvAY8TcyvzpqQ1cb2knP5bVjfz+B2J+Wk583wFP92ygkPEfST7PJRKjlq6Dq02MlBbN02dZm2bKl/G66xJvMxtnUIZoRdNImTvgtDfTSLU2QWhv5pECG7d9pYhetkoRGgXiM4bhWgnzvpVoxDtxFv/0yhEO3HX/zYJEdqJu75oFKKduOvXmxAtpzNqMtQ2H3mo/bpsqD1QGGoPthxqq+qxq6G2ufOh9mWUTMJxGDh+gQ6nZTq4Cjq4ddLhCAohdCGEPNzeqypnZaoMFVQZ1loVM0trTzq8KNMBK+iAa62DvW8d/i7TYaSgw6jWOnT2rcNfZTqMFXQY11oHqO9biJdlQkwUhJjUWwi0byHOuRDy0oWnIIJXbxH23ky/KrOGLwpCfKm3EHtvp/8pE+JWQYjbegux94b63zIhfAUh/FoLgfbeUF+UCTFVEGJabyGeoqF+FSQ4ikmp1zQYcA1cif+bcv75Ob03283p2SaDSz8G/OPheH+0OeBBk3Qb6A0lepcq9C4Ph95y9WmXvLDE660Kr7eHw8t+El4jidc7FV7vDodX50l4jSVe71V4vT8cXvCRVhk2AJtIwK5UgF0dEDD0JMA8Cdi1CrDrAwL2NC7/iwTsgwqwDwcE7Gl8/q0E7EYF2M0BAXsap+9LwD6qAPt4OMDQ0zj9qQTskwqwTwcE7JGc/hUe0+vFy8BvJFxBOa5YpJbyCOq18R3q+b9ubtB6pLdQfqBlGI80iGWMfbrzIqvAXhjI75jcYjyj7/ZcBteRE8T0hTEeZ+XdFSWhxcrypST0TE3oWcOENvPhhl13ocXS9VtJ6K9qQn9tmNB2Lhg+1vabvekslsbfSTpHajpHDdO5kw9v111nsfT+XtI5VtM5bpTOWSeovsKKpfwrSdhETdikYcKiXDDq1F1nsVPgWtLZ+QzVlKY3NEtro7v616l950tsSPggaT1Q1XrQOK2b1gETex5uJK1dVa3dxmmd74SZtR89i20VHyWth6paDxum9eOt7+9NXLFV45MkLlYVFzdO3HxnrPZ2LN4+6ktSj1SlHtVL6qNNWj/ehqmdiIsXs4jkhL7Zlg578CKBGiABPe3nr/Mw+UPnH+zWvHg0rpa/sVyWnW6XYqdfxTjyRssTvtihTkcEc5weAsWiOoM49OcJvnIjjIOL0OUv91FFDcjfKNNhNVYoxwpVZ4Xqz6rTFaxQNVZGjtU1jqYYVAdmPBjYg94BHXkLPMxbUglHO8MIN2Lk281MU4KY4xHMp+Q57vKdWC+Y44C/kEZyNRe5hUZro3csJgUtY4UV+5WxgqWsLkejGCd8KwUryxEqJClSiX12MN7UC9LNKlOH3mvRr8Wc0gKIA+uIz6VxF/x0OV4JTXaJqZTG/sEBelU88fobv2wDZsU3fqtreDUfJJEzKZDR2lbF9IQ6C0o+oqqIHa6hWVXDFQn1B0nY7tRRQtaxEd2WFQW3tkPusZBubi3gET3GkEpoqEu4lRF207V03TxIBaXWqP857eP8kgn4OyDleZYmKjYuyO3S2imAnwv6PArnABbJvHVv1Fh/b6LqlgYZ0OkSkGhofgdGy1LFc1qEp0pPvawx2n5XUQpo0+EU1mZAZxIgcASW/nwrWmfb0nq0To764V0VUJ1HYzwIvFiyOPAbKGa3hSFmD9ljr3qlpkmvMP0An10+3L4hJQij9c1FtOrR8fbZZyiNuJcYNw2973jacl+kbAgO9cpj8CVqNwyGHvfjJPaliLx8IPh5nPwBMtwVuzPl4qy0hki0hrC4VyoP6q018coH8RKSlfNnxRjAdaIEx54TCGYJ+c1O7OQWcfpZGmxuPt2z+BWo802qr1nN1s3XQZ4+pG/bAFawuvPU6voFVnenZGp3j2Jf++tX7NoezjfZQ6FA/VSgrClYV+mbkkrfdq/STlrsp1KpL6skt/0vl92krJ9U3Oo/A8cAtXTWcSJRCntVz8CvpJmAyh2rlw/spT+qTmSQLGZ8Wu2HeKkzL3LnU5f86+N+5K5vTE2tgSngoKyVyZ8xsqm5IE23586I8MujRraeoVcG/gDnVW263RvjgFt9DMBCF43NvZ4aUXplAdlUPw2D6WljcEU40nhF3gL00/j9NFYfsenRFkJ6x0j/iPp9Qzyib9KOCasRfYut8ZpdaxnVsMQ+nQNZGTBzM7hpRx79t9Ciq0/tmgc4tVsyYYvafGhkVBj80OJZOWpmdS5W/dcIoGmqLRLYOVh2dVh2/WEhXVdbfWrnYHWqw2o3AJZlq8Hq5GBBhXXNTv1pGXpXjVY3T0thZbPbAFq2rea1aHd6FZeCkye31p6XiRSXzWF+jwFU8POwAbsMzHZbkVd+nwFUcPWwATsNLMNQ5JXfa4BUNrE8fKPB/nl1Ve0x37NHCu4ePrz3vndetqnYl4Bpn351MYMz+w38wr+sTHSkYWR8lIWtzH+nwc9ALwsunABht4kHPiua95DV2TSG2O04vHBo5cUXzjX+30420yC+ewHp0naa49X/943+Tv/fyOf/B1BLBwgNi3L7pQoAAGlyAABQSwECFAAUAAgACABZeU0/DYty+6UKAABpcgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAN8KAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" /> | <ggb_applet width="639" height="346" version="3.2" ggbBase64="UEsDBBQACAAIAFl5TT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Z1bd9q4Goav9/wKLV/Mms5MiCUfgD2hs0iaznQmbdomTffqTZcxAtwYm9omJf31WycbjFxjkRCwc1HAkmXpefV9Olo9+XMx9cEdjmIvDHoabOkawIEbDr1g3NPmyeioo/35/KeTMQ7HeBA5YBRGUyfpaUYLafT63Hv+039O4kn4DTg+i3Lj4W89beT4MdZAPIuwM4wnGCe568584fmeE91fDr5gN4mXATyRV8FsnmQX3enwwovJ7ySaY+2YPXHme8kL784b4gj4odvTbIvknXy7wVHiuY7f00ydX0E9Da0FkksGDZ2Ekfc9DBIafZm47wywTwhcJfc+BuCOhho8aEQiAxB73zGhhei1k2MG4QTPXd8bek5AC8qySCIB8M0bJhOSO6NLnoa98YTCMy2emhuG0fDqPk7wFCw+4SgkYVarYxmG1dVtu4tsk9x2z0OQ1W5BA3UQRKYFdZuExKQoJCOo09JtXe/a0OxadsewyT0iyOy29I7Zhjbq2jaCuskfjO+ucJKQIsbAWeBYFB6MI2+YUac/XsWnob+8NAu9IDlzZsk8YhXEEJcYqJ5GgEa0hP1g7GNxDRH5Jti9HYSLK07N4Elf38/YLSw/g/FZ6IcRiGgxLRJBfA74J4tDM5rF0lkcncUQadBEs3DYRSwG+xzwT66tF/CsiYLDtNRQTx/jxYBeIInTep2yYZWip2lgHnjJRfqD1KZbUVLI47+ZTwfEnlbrU5YkTJMUPLdO8+R4rbqd3OIowD6vVAFRdh7OY15z+bNYRobY9abkJw8QRByq1geSAX51iMcRTjPOrZHzYqH6asVdu3xynGaC5iEmeXUT4lZIeRJaFmr1CTE4+m3oJPQKNRsfTzGxqYRVB1abMi59LXMuIfMT6+BWikYiFFYOVo0cfzZxyJWWnhr4PXEbqwViCb4Oh/liOgHBxcpATHRGE6CCzDAeCl+ZiEoMZiRJZhIrWWKQYrDgDwb31GuSzHzn97Io3Hqoo1g6GaItZ8I4TqdOMASBMyXPuSB1lyHxqHsEjk4RAQf2tEWfVDEBYp6kgQ5PTiQiwaamkKF0tLx1JBNSCwMcx8yEk1VjzQmSM44KeujbqyHzZBoQnkcU7HHlAuCvAY8TcyvzpqQ1cb2knP5bVjfz+B2J+Wk583wFP92ygkPEfST7PJRKjlq6Dq02MlBbN02dZm2bKl/G66xJvMxtnUIZoRdNImTvgtDfTSLU2QWhv5pECG7d9pYhetkoRGgXiM4bhWgnzvpVoxDtxFv/0yhEO3HX/zYJEdqJu75oFKKduOvXmxAtpzNqMtQ2H3mo/bpsqD1QGGoPthxqq+qxq6G2ufOh9mWUTMJxGDh+gQ6nZTq4Cjq4ddLhCAohdCGEPNzeqypnZaoMFVQZ1loVM0trTzq8KNMBK+iAa62DvW8d/i7TYaSgw6jWOnT2rcNfZTqMFXQY11oHqO9biJdlQkwUhJjUWwi0byHOuRDy0oWnIIJXbxH23ky/KrOGLwpCfKm3EHtvp/8pE+JWQYjbegux94b63zIhfAUh/FoLgfbeUF+UCTFVEGJabyGeoqF+FSQ4ikmp1zQYcA1cif+bcv75Ob03283p2SaDSz8G/OPheH+0OeBBk3Qb6A0lepcq9C4Ph95y9WmXvLDE660Kr7eHw8t+El4jidc7FV7vDodX50l4jSVe71V4vT8cXvCRVhk2AJtIwK5UgF0dEDD0JMA8Cdi1CrDrAwL2NC7/iwTsgwqwDwcE7Gl8/q0E7EYF2M0BAXsap+9LwD6qAPt4OMDQ0zj9qQTskwqwTwcE7JGc/hUe0+vFy8BvJFxBOa5YpJbyCOq18R3q+b9ubtB6pLdQfqBlGI80iGWMfbrzIqvAXhjI75jcYjyj7/ZcBteRE8T0hTEeZ+XdFSWhxcrypST0TE3oWcOENvPhhl13ocXS9VtJ6K9qQn9tmNB2Lhg+1vabvekslsbfSTpHajpHDdO5kw9v111nsfT+XtI5VtM5bpTOWSeovsKKpfwrSdhETdikYcKiXDDq1F1nsVPgWtLZ+QzVlKY3NEtro7v616l950tsSPggaT1Q1XrQOK2b1gETex5uJK1dVa3dxmmd74SZtR89i20VHyWth6paDxum9eOt7+9NXLFV45MkLlYVFzdO3HxnrPZ2LN4+6ktSj1SlHtVL6qNNWj/ehqmdiIsXs4jkhL7Zlg578CKBGiABPe3nr/Mw+UPnH+zWvHg0rpa/sVyWnW6XYqdfxTjyRssTvtihTkcEc5weAsWiOoM49OcJvnIjjIOL0OUv91FFDcjfKNNhNVYoxwpVZ4Xqz6rTFaxQNVZGjtU1jqYYVAdmPBjYg94BHXkLPMxbUglHO8MIN2Lk281MU4KY4xHMp+Q57vKdWC+Y44C/kEZyNRe5hUZro3csJgUtY4UV+5WxgqWsLkejGCd8KwUryxEqJClSiX12MN7UC9LNKlOH3mvRr8Wc0gKIA+uIz6VxF/x0OV4JTXaJqZTG/sEBelU88fobv2wDZsU3fqtreDUfJJEzKZDR2lbF9IQ6C0o+oqqIHa6hWVXDFQn1B0nY7tRRQtaxEd2WFQW3tkPusZBubi3gET3GkEpoqEu4lRF207V03TxIBaXWqP857eP8kgn4OyDleZYmKjYuyO3S2imAnwv6PArnABbJvHVv1Fh/b6LqlgYZ0OkSkGhofgdGy1LFc1qEp0pPvawx2n5XUQpo0+EU1mZAZxIgcASW/nwrWmfb0nq0To764V0VUJ1HYzwIvFiyOPAbKGa3hSFmD9ljr3qlpkmvMP0An10+3L4hJQij9c1FtOrR8fbZZyiNuJcYNw2973jacl+kbAgO9cpj8CVqNwyGHvfjJPaliLx8IPh5nPwBMtwVuzPl4qy0hki0hrC4VyoP6q018coH8RKSlfNnxRjAdaIEx54TCGYJ+c1O7OQWcfpZGmxuPt2z+BWo802qr1nN1s3XQZ4+pG/bAFawuvPU6voFVnenZGp3j2Jf++tX7NoezjfZQ6FA/VSgrClYV+mbkkrfdq/STlrsp1KpL6skt/0vl92krJ9U3Oo/A8cAtXTWcSJRCntVz8CvpJmAyh2rlw/spT+qTmSQLGZ8Wu2HeKkzL3LnU5f86+N+5K5vTE2tgSngoKyVyZ8xsqm5IE23586I8MujRraeoVcG/gDnVW263RvjgFt9DMBCF43NvZ4aUXplAdlUPw2D6WljcEU40nhF3gL00/j9NFYfsenRFkJ6x0j/iPp9Qzyib9KOCasRfYut8ZpdaxnVsMQ+nQNZGTBzM7hpRx79t9Ciq0/tmgc4tVsyYYvafGhkVBj80OJZOWpmdS5W/dcIoGmqLRLYOVh2dVh2/WEhXVdbfWrnYHWqw2o3AJZlq8Hq5GBBhXXNTv1pGXpXjVY3T0thZbPbAFq2rea1aHd6FZeCkye31p6XiRSXzWF+jwFU8POwAbsMzHZbkVd+nwFUcPWwATsNLMNQ5JXfa4BUNrE8fKPB/nl1Ve0x37NHCu4ePrz3vndetqnYl4Bpn351MYMz+w38wr+sTHSkYWR8lIWtzH+nwc9ALwsunABht4kHPiua95DV2TSG2O04vHBo5cUXzjX+30420yC+ewHp0naa49X/943+Tv/fyOf/B1BLBwgNi3L7pQoAAGlyAABQSwECFAAUAAgACABZeU0/DYty+6UKAABpcgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAN8KAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" /> | ||
</div> | </div> |
Version vom 27. Oktober 2011, 14:57 Uhr
II. Addition und Subtraktion natürlicher Zahlen:
1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme
1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme
Erklärung
Hier kannst du durch Ziehen der Schieberegler sehen, wie Terme funktionieren:
Aufgaben
|
II. Addition und Subtraktion natürlicher Zahlen:
1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme
1. Addieren und Subtrahieren - 2. Rechengesetze und Rechenvorteile - 3. Terme