2006 IV: Unterschied zwischen den Versionen
Zeile 77: | Zeile 77: | ||
;b) | ;b) | ||
Mit welcher Wahrscheinlichkeit wird bei dieser Entscheidungsregel ein Laplace-Würfel falsch eingestuft? | Mit welcher Wahrscheinlichkeit wird bei dieser Entscheidungsregel ein Laplace-Würfel falsch eingestuft? | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</td></tr></table></center> | </td></tr></table></center> | ||
Zeile 94: | Zeile 87: | ||
<center><table border="0" width="800px" cellpadding=5 cellspacing=15> | <center><table border="0" width="800px" cellpadding=5 cellspacing=15> | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
− | + | Eine Packung des Spiels enthält – ungeordnet und äußerlich nicht unter-scheidbar – 7 Laplace- und 3 Vegas-Würfel. | |
;Aufgabe 4 | ;Aufgabe 4 | ||
− | + | Aus dieser Packung wird ein Würfel entnommen und 100-mal geworfen. Mit welcher Wahrschein¬lichkeit handelt es sich um einen Vegas-Würfel, wenn dabei 25-mal eine „6“ geworfen wird? | |
Zeile 114: | Zeile 107: | ||
;Aufgabe 5 | ;Aufgabe 5 | ||
+ | Die 10 Würfel werden nun einzeln nacheinander aus der Packung ent-nommen und je 100-mal geworfen. | ||
+ | ;a) | ||
+ | Die Zufallsgröße X bezeichne die Anzahl der geworfenen Sechser unter den insgesamt 1000 durchzuführenden Würfen. Berechnen Sie Erwartungs¬wert und Varianz von X. | ||
+ | [Ergebnis: <math>E(X)=216\frac{2}{3}, Var(X) = 163\frac{8}{9}</math> ] | ||
Version vom 28. Februar 2010, 20:27 Uhr
|
Zeigen Sie, dass der Erwartungswert der Zufallsgröße „Augenzahl beim einmaligen Werfen eines Vegas-Würfels“ 4 ist.
|
Auf dem Tisch liegen ungeordnet drei Laplace-Würfel und ein Vegas-Würfel. Ein Spieler nimmt davon zufällig drei Würfel und wirft sie gleich¬zeitig. Mit welcher Wahrscheinlichkeit erzielt er drei gleiche Augenzahlen, wenn er drei Laplace-Würfel genommen hat? Mit welcher Wahrschein-lichkeit erzielt er drei gleiche Augenzahlen, wenn er zwei Laplace-Würfel und den Vegas-Würfel genommen hat? Welche Folgerung können Sie aus Ihren Ergebnissen bezüglich der stochastischen Abhängigkeit der Ereignisse „Er erzielt drei gleiche Augenzahlen“ und „Er nimmt drei Laplace-Würfel“ ziehen?
|
Um bei einem Würfel festzustellen, ob es sich um einen Laplace- oder Vegas-Würfel handelt, wird er 100 mal geworfen. Ein Vegas-Würfel soll mit einer Wahrscheinlichkeit von mindestens 99 % als solcher eingestuft werden.
Bestimmen Sie hierzu die Entscheidungsregel anhand der Anzahl der geworfenen Sechser so, dass möglichst auch ein Laplace-Würfel richtig eingestuft wird. [Ergebnis: Entscheidung für Vegas-Würfel ab 23 geworfenen Sechsern]
Mit welcher Wahrscheinlichkeit wird bei dieser Entscheidungsregel ein Laplace-Würfel falsch eingestuft? |
Eine Packung des Spiels enthält – ungeordnet und äußerlich nicht unter-scheidbar – 7 Laplace- und 3 Vegas-Würfel.
Aus dieser Packung wird ein Würfel entnommen und 100-mal geworfen. Mit welcher Wahrschein¬lichkeit handelt es sich um einen Vegas-Würfel, wenn dabei 25-mal eine „6“ geworfen wird?
|
Die 10 Würfel werden nun einzeln nacheinander aus der Packung ent-nommen und je 100-mal geworfen.
Die Zufallsgröße X bezeichne die Anzahl der geworfenen Sechser unter den insgesamt 1000 durchzuführenden Würfen. Berechnen Sie Erwartungs¬wert und Varianz von X. [Ergebnis: ]
|
|