Lösung b): Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K
K
Zeile 10: Zeile 10:
 
<math>\Rightarrow e^{at} = 0 (f)</math><br />
 
<math>\Rightarrow e^{at} = 0 (f)</math><br />
  
<math>\Rightarrow</math> keine Nullstellen, da die e-Fkt. nie 0 wird und somit der Ausdrick <math>e^{at}</math> ebenfalls nie 0 werden kann
+
<math>\Rightarrow</math> keine Nullstellen, da die e-Fkt. nie 0 wird und somit der Ausdruck <math>e^{at}</math> ebenfalls nie 0 werden kann
  
 
===<u>Suche nach Extremstellen:</u>===
 
===<u>Suche nach Extremstellen:</u>===
Zeile 16: Zeile 16:
 
<math>f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} = 0 \Rightarrow 58\cdot a \cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)</math>
 
<math>f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} = 0 \Rightarrow 58\cdot a \cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)</math>
  
<math>\Rightarrow</math> keine Extremstellen, da die e-Fkt. nie 0 wird und somit der Ausdrick <math>e^{at}</math> ebenfalls nie 0 werden kann
+
<math>\Rightarrow</math> keine Extremstellen, da die e-Fkt. nie 0 wird und somit der Ausdruck <math>e^{at}</math> ebenfalls nie 0 werden kann
  
  

Version vom 6. Januar 2010, 15:03 Uhr

y = f_{a}(t) = \frac{2\cdot e^{at}}{e^{at}+29}, t\in R, a\in R, a>0

f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} 

Inhaltsverzeichnis

Untersuchen sie die Funktionen fa auf Nullstellen und lokale Extremstellen

Suche nach Nullstellen:

f_{a}(t) = \frac{2\cdot e^{at}}{e^{at}+29} = 0 \Rightarrow  2\cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)

\Rightarrow keine Nullstellen, da die e-Fkt. nie 0 wird und somit der Ausdruck e^{at} ebenfalls nie 0 werden kann

Suche nach Extremstellen:

f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} = 0 \Rightarrow 58\cdot a \cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)

\Rightarrow keine Extremstellen, da die e-Fkt. nie 0 wird und somit der Ausdruck e^{at} ebenfalls nie 0 werden kann


Jeder Graph Ga bestitzt genau einen Wendepunkt Wa. Zeigen sie, dass die Wendepunkte Wa auf einer parallelen zur t-Achse liegen

f''_{a}(t) = \frac{58\cdot a \cdot e^{at}\cdot a\cdot(e^{at}+29)^{2} - 2 \cdot(e^{at} + 29)\cdot e^{at}\cdot a \cdot 58 \cdot a \cdot e^{at}    }{(e^{at} + 29) ^{4} } =
= \frac{58\cdot a^{2} \cdot e^{at}\cdot (e^{at} + 29) - 2\cdot a^{2} \cdot (e^{at})^{2}\cdot 58   }{(e^{at}+29)^{3}} = 58\cdot a^{2}\cdot \frac{(e^{at})^{2} + 29\cdot e^{at} - 2(e^{at})^2}{(e^{at} + 29)^{3}} = 58\cdot a^{2} \cdot \frac {29\cdot e^{at} - e^{2at}}{(e^{at}+29)^{3}}

Suche nach dem Wendepunkt:

f''_{a}(t) = 58\cdot a^{2} \cdot \frac {29\cdot e^{at} - e^{2at}}{(e^{at}+29)^{3}} = 0 \Rightarrow 58\cdot a^{2} (29\cdot e^{at} - e^{2at}) = 0 | : 58\cdot a^{2} \Rightarrow (a \neq 0)

Zeichnen sie die Graphen G0,75 und G1 in ein und dasselbe Koordinatensystem und schlussfolgern Sie, welchen Einfluss der Parameter a auf den Verlauf der Graphen Ga hat