LK Mathematik Abitur NRW 2007: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K
 
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
==Angabe aus einer Abituraufgabe 2007; Nordrhein-Westfalen==
+
<center>
 +
{|width=90%| style="background-color:#F5F5F5; border: 1px solid #63B8FF; padding:0.5em"
 +
| valign="top" |
 +
''Bearbeitet wird eine Abituraufgabe von 2007 aus Nordrhein - Westfalen. Zu der Aufgabe sind auf der nächsten Seite einige Aufgaben gestellt, welche es zu bearbeiten gilt. Die interaktive Bearbeitung der Aufgabe ist so aufgebaut, dass zu Beginn nochmals erläutert wird was genau errechnet werden soll und wie die jeweilige Aufgabe zu berechnen ist.
 +
 
 +
Des Weiteren findest du neben den Aufgaben viele Veranschaulichungen durch Graphen in GeogebraApplets, von denen du manche auch durch einen Schieberegler verändern kannst. Dies ist vor allem für diejenigen nützlich, die sich die Lösungswege schwerer erschließen können und dadurch eine kleine Hilfestellung bekommen.
 +
 
 +
 
 +
:Nun wünsche ich dir noch viel Spaß beim Bearbeiten der interaktiven Aufgabe.
 +
 
 +
:Und hier gehts auch schon zur [[Facharbeit‎saufgabe|Wasserstandsaufgabe]]!
 +
|}
 +
</center>
 +
<big>'''Aufgabenstellung:'''<ref>[http://www.standardsicherung.nrw.de/abitur-gost/getfile.php?file=910 Angabe als pdf Datei]</ref>
 +
</big>
 +
 
  
 
[[Bild:Eilif_Peterssen-_Sevilosen.jpg|250px|right]]
 
[[Bild:Eilif_Peterssen-_Sevilosen.jpg|250px|right]]
Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorhersagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar f<sub>a</sub> mit <math>f(t) = \frac{1}{4} t^3 - a t^2 + a^2 t</math>, a > 0
 
  
Die Funktion  gibt dabei die Durchflussgeschwindigkeit in <math>10^6 \frac{m^3}{Monat}</math> und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage (t = 0) an. Die Funktion  berücksichtigt, dass es sich um einen Fluss handelt, der zeitweise austrocknet.
+
Um die Wasserstände eines Flusses vorherzusagen, kann man versuchen, die Durchflussgeschwindigkeit
 +
des Wassers an einer bestimmten Stelle des Flusses mit Hilfe geeigneter
 +
Funktionen zu beschreiben.
 +
Solche näherungsweise Beschreibungen der Durchflussgeschwindigkeiten seien z. B. gegeben
 +
durch die Funktionenschar <math>f_a (t) = \frac{1}{4}t^3 - a t^2 + a^2 t</math>, mit a > 0 .
 +
 
 +
Dabei gibt <math>f_a (t)</math> die Durchflussgeschwindigkeit in <math>10^6 \frac{m^3}{Monat}</math> (Millionen Kubikmeter pro
 +
Monat) und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage <math>t = 0</math> an.
 +
Die Funktionen <math>f_a</math> berücksichtigen, dass es sich um einen Fluss handelt, der zeitweise
 +
austrocknet.
 +
 
 +
 
  
==Aufgaben zur Wasserstandsaufgabe==
+
:#[[LK Mathematik Abitur NRW 2007/Nullstellen|Berechnung der Zeitpunkte, in denen der Fluss austrocknet]]
 +
:#[[LK Mathematik Abitur NRW 2007/Extremwerte|Bestimmung der maximalen und minimalen Volumina]]
 +
:#[[LK Mathematik Abitur NRW 2007/Wendepunkt|Bestimmung der größten Senkung der Durchflussgeschwindigkeit]]
 +
:#[[LK Mathematik Abitur NRW 2007/Theoretische Überlegungen|Theoretische Fragen zur Wasserstandsaufgabe]]
 +
:#[[LK Mathematik Abitur NRW 2007/Integralberechnung|Berechnung des Wasservolumens in den ersten sechs Monaten]]
 +
:#[[LK Mathematik Abitur NRW 2007/Flächengleichheit|Volumengleicheit zweier verschiedener Funktionen bis zum Zeitpunkt t<sub>0</sub>]]
  
:*[[Facharbeit Neutert/Nullstellen|Berechnung der Zeitpunkte, in denen der Fluss austrocknet]]
 
  
:*[[Facharbeit Neutert/Extremwerte|Bestimmung der maximalen und minimalen Volumina]]
 
  
:*[[Facharbeit Neutert/Wendepunkt|Bestimmung der größten Senkung der Durchflussgeschwindigkeit]]
 
  
:*[[Facharbeit Neutert/Theoretische Überlegungen|Theoretische Fragen zur Wasserstandsaufgabe]]
 
  
:*[[Facharbeit Neutert/Integralberechnung|Berechnung des Wasservolumens in den ersten sechs Monaten]]
 
  
:*[[Facharbeit Neutert/Flächengleichheit|Volumengleicheit zweier verschiedener Funktionen bis zum Zeitpunkt t<sub>0</sub>]]
+
<big>'''Internetquellen'''</big>
 +
:<references/>

Aktuelle Version vom 6. Februar 2011, 15:52 Uhr

Bearbeitet wird eine Abituraufgabe von 2007 aus Nordrhein - Westfalen. Zu der Aufgabe sind auf der nächsten Seite einige Aufgaben gestellt, welche es zu bearbeiten gilt. Die interaktive Bearbeitung der Aufgabe ist so aufgebaut, dass zu Beginn nochmals erläutert wird was genau errechnet werden soll und wie die jeweilige Aufgabe zu berechnen ist.

Des Weiteren findest du neben den Aufgaben viele Veranschaulichungen durch Graphen in GeogebraApplets, von denen du manche auch durch einen Schieberegler verändern kannst. Dies ist vor allem für diejenigen nützlich, die sich die Lösungswege schwerer erschließen können und dadurch eine kleine Hilfestellung bekommen.


Nun wünsche ich dir noch viel Spaß beim Bearbeiten der interaktiven Aufgabe.
Und hier gehts auch schon zur Wasserstandsaufgabe!

Aufgabenstellung:[1]


Eilif Peterssen- Sevilosen.jpg

Um die Wasserstände eines Flusses vorherzusagen, kann man versuchen, die Durchflussgeschwindigkeit des Wassers an einer bestimmten Stelle des Flusses mit Hilfe geeigneter Funktionen zu beschreiben. Solche näherungsweise Beschreibungen der Durchflussgeschwindigkeiten seien z. B. gegeben durch die Funktionenschar f_a (t) = \frac{1}{4}t^3 - a t^2 + a^2 t, mit a > 0 .

Dabei gibt f_a (t) die Durchflussgeschwindigkeit in 10^6 \frac{m^3}{Monat} (Millionen Kubikmeter pro Monat) und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage t = 0 an. Die Funktionen f_a berücksichtigen, dass es sich um einen Fluss handelt, der zeitweise austrocknet.


  1. Berechnung der Zeitpunkte, in denen der Fluss austrocknet
  2. Bestimmung der maximalen und minimalen Volumina
  3. Bestimmung der größten Senkung der Durchflussgeschwindigkeit
  4. Theoretische Fragen zur Wasserstandsaufgabe
  5. Berechnung des Wasservolumens in den ersten sechs Monaten
  6. Volumengleicheit zweier verschiedener Funktionen bis zum Zeitpunkt t0




Internetquellen

  • Angabe als pdf Datei