Teilaufgabe a: Unterschied zwischen den Versionen
Aus RMG-Wiki
(14 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | Für jede reelle Zahl a sei eine Funktion | + | Für jede reelle Zahl a sei eine Funktion <math>f_a\,</math> durch <math>y = f_a (x) = ( x - a )\cdot e^{a+2-x}</math> mit <math>x\in R</math> gegeben. |
− | :1.Untersuchen Sie den Graphen von | + | :1. Untersuchen Sie den Graphen von <math>f_a\,</math> auf: |
::*Schnittpunkte mit den Koordinatenachsen,<br />[[Facharbeit Andre Etzel/Teilaufgabe a/Lösung: Schnittpunkte mit den Koordinatenachsen|Lösung: Schnittpunkte mit den Koordinatenachsen]] | ::*Schnittpunkte mit den Koordinatenachsen,<br />[[Facharbeit Andre Etzel/Teilaufgabe a/Lösung: Schnittpunkte mit den Koordinatenachsen|Lösung: Schnittpunkte mit den Koordinatenachsen]] | ||
::*lokale Extrempunkte und<br /> [[Facharbeit Andre Etzel/Teilaufgabe a/Lösung: lokale Extrempunkte|Lösung: lokale Extrempunkte]] | ::*lokale Extrempunkte und<br /> [[Facharbeit Andre Etzel/Teilaufgabe a/Lösung: lokale Extrempunkte|Lösung: lokale Extrempunkte]] | ||
Zeile 10: | Zeile 10: | ||
− | :2.Alle Extrempunkte liegen auf dem Graphen einer Funktion h. Geben Sie eine Funktionsgleichung von h an! | + | :2. Alle Extrempunkte liegen auf dem Graphen einer Funktion h. Geben Sie eine Funktionsgleichung von h an! |
{{Lösung versteckt| | {{Lösung versteckt| | ||
Zeile 17: | Zeile 17: | ||
<math>\rightarrow H ( x ) = e</math><br /> | <math>\rightarrow H ( x ) = e</math><br /> | ||
− | Alle Extrempunkte für <math>a\in R</math> | + | Alle Extrempunkte für <math>a\in R</math> befinden sich auf einer Parallelen zur x-Achse mit <math>y=e\;</math>.<br /> Das heißt, dass alle Extrempunkte auf dem Graphen der Funktion <math>H ( x ) = e\;</math> liegen. |
− | + | ||
− | :3.Skizzieren Sie den Graphen der Funktion | + | <ggb_applet width="660" height="396" version="3.2" ggbBase64="UEsDBBQACAAIAFabOjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZLc+Q0ED6zv0LlUwJkxvY8UzWTLVg4bFWAw8AeOFAl2z0eEdkykpx48uvplmR7MsmygQVSlbLd3dOPr79uafO2qyS7B22EqrdRMokjBnWuClGX26i1+6t19PbmzaYEVUKmOdsrXXG7jWaTNCJ5K27efLExB/XAuHQmHwQ8bKM9lwYiZhoNvDAHAPtEzttOSMH18afsd8itGRXeyfu6aTGK1S3K8qq4Fab/nLqAjRT2O3EvCtBMqnwbLReYOr59AG1FzuU2msdekm6j9EyJohlpD0qLR1VbMh+d71HCmBGPgIikJNtMXaEbaHMpCsFrKsblgUaMPYjCHjCFJbkEUR4IoOu595YrpYvd0VioWPcraIXprNYTzG74SyJ2DJrFcrI60cQLxBATxkwWMTXnGL6W8WS1Xs6W8Xw1S+N1vPLB4H4H1mLzDOMdmB7BUotigJg+3ptvlRxFjRK1fccb22rX+FkQ7eyRgmFcTVV9U5cSggxzzg+Q32Wq23mkZt71z8fG/cTlk5XvlFSaaSoNaynDM/NPZ0OJDlaxs4mdRfBBTgd9cp06C/fM/NNZSVH71ELhSV91EvdhhGEkQOfE1x4byTPA9kesrYW97T+QJndjpWT/Y1tlOCenRBlcJv+Sy830jGGbO9A1SM+jGhvbqtawe+Krb53Lo4BcVPjpFQEQTs36BRPw0gJKDX3efsg8XE4bn3L1TLyZ9klQDgZzzS1uC6zHUi00zBYHid4KbklCkyKhAhwj69hQtxVokQ/I8IiiYYg2BKLFMx02iXJL4QzNEXZUf4QvuD6aA8e3SRJYwY+4IE5LdN5+UEUfOISVbpNUApfg1YIGreIdzhy98cwo2VrY5Qhgfatybt2y9NmF2U9iN54dLRY3p/3A7kUH46C9vHBG7toDkqQGY6iNAbyevzX22AGPq6TxNeJ+BfD8621ZgzW7IR4Igqzy3fhkX+C8L+lklazTNf3PF9fxfPFCl0Jp/0ebHJhecjKF/VnyVPGk6g7PIUNnXJ/mHs+5DlHcX3SXbMsuOnbF+CX7ksFvF5x9xdJJjJLuMmLTZ6jt29pNQDQ6e3UX/y6/+635HLr4ldDFr+bYXyOWBcSOCBe8BAtFiEbr/wySUy6l8fyfQ+K2naGZ7UfW3X8ecQV8hPevqgf+qL2N8cseUZMiF/bTEH8fIHYMxFy+ZnDZO3fn8UuwB8Xg4rMhJcZ9PqRpgPQ5kgTwsO/9NYNuUc7N7Byk6emR4y5i4SZ68ydQSwcIZxEcsK0DAAC7CgAAUEsBAhQAFAAIAAgAVps6PGcRHLCtAwAAuwoAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAADnAwAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />}}<br /> |
+ | |||
+ | :3. Skizzieren Sie den Graphen der Funktion <math>f_2\,</math> für <math>1,6 \le x \le 7</math>! | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
− | Graph der Funktion | + | Graph der Funktion <math>f_2\,</math> für <math>1,6 \le x \le 7</math> |
− | + | ||
− | [[ | + | [[Bild:Graph_f_2.png|500px]] |
+ | |||
+ | }}<br /> |
Aktuelle Version vom 26. Januar 2010, 19:28 Uhr
Für jede reelle Zahl a sei eine Funktion durch mit gegeben.
- 1. Untersuchen Sie den Graphen von auf:
- Schnittpunkte mit den Koordinatenachsen,
Lösung: Schnittpunkte mit den Koordinatenachsen - lokale Extrempunkte und
Lösung: lokale Extrempunkte - Wendepunkte!
Lösung: Wendepunkte
- Schnittpunkte mit den Koordinatenachsen,
- Bestimmen Sie gegebenenfalls deren Koordinaten!
- 2. Alle Extrempunkte liegen auf dem Graphen einer Funktion h. Geben Sie eine Funktionsgleichung von h an!
Alle Extrempunkte für befinden sich auf einer Parallelen zur x-Achse mit .
Das heißt, dass alle Extrempunkte auf dem Graphen der Funktion liegen.
- 3. Skizzieren Sie den Graphen der Funktion für !