Lösung d): Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K (Die Seite wurde neu angelegt: Durch die Funktion <math>f_{0,04}\;</math> für <math>0\leq t\leq 200</math> (t in Tagen) kann das Wachstum von Sonnenblumen beschrieben werden, wobei <math>f_{0,04} (t...)
 
K (Berechnen Sie die Höhe einer Sonnenblumenpflanze nach 10, 50 und 150 Tagen)
Zeile 4: Zeile 4:
  
 
===<u>Berechnen Sie die Höhe einer Sonnenblumenpflanze nach 10, 50 und 150 Tagen</u>===
 
===<u>Berechnen Sie die Höhe einer Sonnenblumenpflanze nach 10, 50 und 150 Tagen</u>===
 +
<br />
  
 +
'''Höhe nach 10 Tagen:'''
  
 +
<math>f_{0,04} (10) = \frac {2\cdot e^{0,04\cdot 10}} {e^{0,04\cdot 10} + 29} m =  \frac {2\cdot e^{0,4}} {e^{0,4} + 29} m = 0,098m = 9,8cm</math>
  
 +
'''Höhe nach 50 Tagen:'''
  
 +
<math>f_{0,04} (50) = \frac {2\cdot e^{0,04\cdot 50}} {e^{0,04\cdot 50} + 29} m = \frac {2\cdot e^{2}} {e^{2} + 29} m = 0,406m = 40,6cm</math>
 +
 +
'''Höhe nach 150 Tagen:'''
 +
 +
<math>f_{0,04} (150) = \frac {2\cdot e^{0,04\cdot 150}} {e^{0,04\cdot 150} + 29} m = \frac {2\cdot e^{6}} {e^{6} + 29} m = 1,866m = 186,6cm</math>
  
 
===<u>Berechnen Sie, wann die Wachstumsgeschwindigkeit einer Sonnenblumenpflanze am größten ist</u>===
 
===<u>Berechnen Sie, wann die Wachstumsgeschwindigkeit einer Sonnenblumenpflanze am größten ist</u>===

Version vom 25. Januar 2010, 20:33 Uhr

Durch die Funktion f_{0,04}\; für 0\leq t\leq 200 (t in Tagen) kann das Wachstum von Sonnenblumen beschrieben werden, wobei f_{0,04} (t)\; die Höhe (in m) der Pflanzen zur Zeit t bedeutet.

f_{0,04} (t) = \frac {2\cdot e^{0,04t}} {e^{0,04t} + 29}\;\;\;\;\;\;0\leq t\leq 200

Berechnen Sie die Höhe einer Sonnenblumenpflanze nach 10, 50 und 150 Tagen


Höhe nach 10 Tagen:

f_{0,04} (10) = \frac {2\cdot e^{0,04\cdot 10}} {e^{0,04\cdot 10} + 29} m =  \frac {2\cdot e^{0,4}} {e^{0,4} + 29} m = 0,098m = 9,8cm

Höhe nach 50 Tagen:

f_{0,04} (50) = \frac {2\cdot e^{0,04\cdot 50}} {e^{0,04\cdot 50} + 29} m = \frac {2\cdot e^{2}} {e^{2} + 29} m = 0,406m = 40,6cm

Höhe nach 150 Tagen:

f_{0,04} (150) = \frac {2\cdot e^{0,04\cdot 150}} {e^{0,04\cdot 150} + 29} m = \frac {2\cdot e^{6}} {e^{6} + 29} m = 1,866m = 186,6cm

Berechnen Sie, wann die Wachstumsgeschwindigkeit einer Sonnenblumenpflanze am größten ist

Erläutern Sie die Grenzen dieser mathematischen Modellbildung