Lösung b): Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(1. Möglichkeit: Die H-Methode)
(1. Möglichkeit: Die H-Methode)
Zeile 46: Zeile 46:
 
Man nähert sich dem möglichen Wendepunkt mit Hilfe eines Grenzwertes an und versucht herauszufinden, ob ein Vorzeichenwechsel am Wendepunkt stattfindet. Falls es einen Vorzeichenwechsel geben sollte, ist dies der eindeutige Beweis für einen Wendepunkt an dieser Stelle.
 
Man nähert sich dem möglichen Wendepunkt mit Hilfe eines Grenzwertes an und versucht herauszufinden, ob ein Vorzeichenwechsel am Wendepunkt stattfindet. Falls es einen Vorzeichenwechsel geben sollte, ist dies der eindeutige Beweis für einen Wendepunkt an dieser Stelle.
  
1. Teil: <math>f''_{a}(\frac {ln29} {a}+h)</math>
+
'''1. Teil: <math>f''_{a}(\frac {ln29} {a}+h)</math>'''
  
 
<math>f''_{a}(\frac {ln29} {a}+h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}+h)} - e^{2a\cdot(\frac {ln29} {a}+h)}}{(e^{a\cdot (\frac {ln29} {a}+h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} + ah)} - e^{(\frac {2a\cdot ln29} {a} + 2ah)}}{(e^{(\frac {a\cdot ln29} {a} + ah)} + 29)^{3}} = </math>
 
<math>f''_{a}(\frac {ln29} {a}+h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}+h)} - e^{2a\cdot(\frac {ln29} {a}+h)}}{(e^{a\cdot (\frac {ln29} {a}+h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} + ah)} - e^{(\frac {2a\cdot ln29} {a} + 2ah)}}{(e^{(\frac {a\cdot ln29} {a} + ah)} + 29)^{3}} = </math>
Zeile 64: Zeile 64:
  
  
2. Teil:  <math>f''_{a}(\frac {ln29} {a}-h)</math>
+
'''2. Teil:  <math>f''_{a}(\frac {ln29} {a}-h)</math>'''
  
 
<math>f''_{a}(\frac {ln29} {a}-h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}-h)} - e^{2a\cdot(\frac {ln29} {a}-h)}}{(e^{a\cdot (\frac {ln29} {a}-h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} - ah)} - e^{(\frac {2a\cdot ln29} {a} - 2ah)}}{(e^{(\frac {a\cdot ln29} {a} - ah)} + 29)^{3}} = </math>
 
<math>f''_{a}(\frac {ln29} {a}-h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}-h)} - e^{2a\cdot(\frac {ln29} {a}-h)}}{(e^{a\cdot (\frac {ln29} {a}-h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} - ah)} - e^{(\frac {2a\cdot ln29} {a} - 2ah)}}{(e^{(\frac {a\cdot ln29} {a} - ah)} + 29)^{3}} = </math>

Version vom 24. Januar 2010, 12:42 Uhr

y = f_{a}(t) = \frac{2\cdot e^{at}}{e^{at}+29}, t\in R, a\in R, a>0

f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} 

Inhaltsverzeichnis

Untersuchen sie die Funktionen fa auf Nullstellen und lokale Extremstellen

Suche nach Nullstellen:

f_{a}(t) = \frac{2\cdot e^{at}}{e^{at}+29} = 0 \Rightarrow  2\cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)

\Rightarrow keine Nullstellen, da die e-Funktion nie 0 wird und somit der Ausdruck e^{at}\; ebenfalls nie 0 werden kann

Suche nach Extremstellen:

f'_{a} (t) = \frac{58\cdot a\cdot e^{at} }{(e^{at}+29) ^{2}} = 0 \Rightarrow 58\cdot a \cdot e^{at} = 0 \Rightarrow e^{at} = 0 (f)

\Rightarrow keine Extremstellen, da die e-Funktion nie 0 wird und somit der Ausdruck e^{at}\; ebenfalls nie 0 werden kann

Jeder Graph Ga bestitzt genau einen Wendepunkt Wa. Zeigen sie, dass die Wendepunkte Wa auf einer parallelen zur t-Achse liegen

Die 2. Ableitung:

f''_{a}(t) = \frac{58\cdot a \cdot e^{at}\cdot a\cdot(e^{at}+29)^{2} - 2 \cdot(e^{at} + 29)\cdot e^{at}\cdot a \cdot 58 \cdot a \cdot e^{at}    }{(e^{at} + 29) ^{4} } =

= \frac{58\cdot a^{2} \cdot e^{at}\cdot (e^{at} + 29) - 2\cdot a^{2} \cdot (e^{at})^{2}\cdot 58   }{(e^{at}+29)^{3}} = 58\cdot a^{2}\cdot \frac{(e^{at})^{2} + 29\cdot e^{at} - 2(e^{at})^2}{(e^{at} + 29)^{3}} = 58\cdot a^{2} \cdot \frac {29\cdot e^{at} - e^{2at}}{(e^{at}+29)^{3}}

Suche nach dem Wendepunkt:

f''_{a}(t) = 58\cdot a^{2} \cdot \frac {29\cdot e^{at} - e^{2at}}{(e^{at}+29)^{3}} = 0 

58\cdot a^{2} (29\cdot e^{at} - e^{2at}) = 0                              | : 58\cdot a^{2} \Rightarrow (a \neq 0)
       (29\cdot e^{at} - e^{2at}) = 0                              | + e^{2at}\;  
               29 \cdot e^{at} = e^{2at}                            | ln\;
           ln(29\cdot e^{at}) = ln(e^{2at})
      ln(29) + ln(e^{at}) = ln(e^{2at})\;                       | - ln(e^{at})\;
                ln(29) = ln(e^{2at}) - ln(e^{at})\;
                ln(29) = 2\cdot a\cdot t \cdot ln(e) - a\cdot t\cdot ln(e)    (ln(e)=1)
                ln(29) = 2\cdot a\cdot t - a\cdot t
                ln(29) = a\cdot t
                      t = \frac {ln29} {a}

Beweis für Wendepunkt:

1. Möglichkeit: Die H-Methode

Man nähert sich dem möglichen Wendepunkt mit Hilfe eines Grenzwertes an und versucht herauszufinden, ob ein Vorzeichenwechsel am Wendepunkt stattfindet. Falls es einen Vorzeichenwechsel geben sollte, ist dies der eindeutige Beweis für einen Wendepunkt an dieser Stelle.

1. Teil: f''_{a}(\frac {ln29} {a}+h)

f''_{a}(\frac {ln29} {a}+h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}+h)} - e^{2a\cdot(\frac {ln29} {a}+h)}}{(e^{a\cdot (\frac {ln29} {a}+h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} + ah)} - e^{(\frac {2a\cdot ln29} {a} + 2ah)}}{(e^{(\frac {a\cdot ln29} {a} + ah)} + 29)^{3}} =

= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(ln29 + ah)} - e^{(2\cdot ln29 + 2ah)}}{(e^{(ln29 + ah)} + 29)^{3}}= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{ln29}\cdot e^{ah} - e^{ln(29^{2})}\cdot e^{2ah}}{(e^{ln29}\cdot e^{ah} + 29)^{3}}=
= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot 29\cdot e^{ah} - 29\cdot 29\cdot e^{2ah}}{(ln29\cdot e^{ah} + 29)^{3}}= 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} \frac {e^{ah} - e^{2ah}}{(ln29\cdot e^{ah} + 29)^{3}}=
= 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} (\frac {1}{(ln29\cdot e^{ah} + 29)^{3}}) \lim_{h \to 0} (e^{ah} - e^{2ah})


Da die Faktoren 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} (\frac {1}{(ln29\cdot e^{ah} + 29)^{3}}) alle positiv sind, kann ein möglicher Vorzeichenwechsel nur von dem Term \lim_{h \to 0} (e^{ah} - e^{2ah}) abhängig sein. Dieser wird nun im folgenden betrachtet:


\lim_{h \to 0} (e^{ah} - e^{2ah})= \lim_{h \to 0} (e^{ah} - e^{(ah)^{2}}) >0

Der Zähler ist größer 0, da gilt: e^{ah} > e^{(ah)^{2}}; dies liegt daran, dass der Faktor (ah)^{2}\; durch das Quadrat noch kleiner wird und somit der Term noch stärker gegen 0 strebt. Positiv ist der Zähler nun, da e^{ah}\; gegen 1+ geht.

\Rightarrow  f''_{a}(\frac {ln29} {a}+h) > 0


2. Teil: f''_{a}(\frac {ln29} {a}-h)

f''_{a}(\frac {ln29} {a}-h) = \lim_{h \to 0} 58\cdot a^{2}\cdot \frac {29\cdot e^{a\cdot(\frac {ln29} {a}-h)} - e^{2a\cdot(\frac {ln29} {a}-h)}}{(e^{a\cdot (\frac {ln29} {a}-h)}+29)^{3}} = 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(\frac {a\cdot ln29} {a} - ah)} - e^{(\frac {2a\cdot ln29} {a} - 2ah)}}{(e^{(\frac {a\cdot ln29} {a} - ah)} + 29)^{3}} =

= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot e^{(ln29 - ah)} - e^{(2\cdot ln29 - 2ah)}}{(e^{(ln29 - ah)} + 29)^{3}}= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot \frac {e^{ln29}} {e^{ah}} - \frac {e^{ln(29)^{2}}}{e^{2ah}}}{(\frac {e^{ln29}}{e^{ah}} + 29)^{3}}=
= 58\cdot a^{2}\lim_{h \to 0} \frac {29\cdot 29\cdot \frac {1} {e^{ah}} - 29\cdot 29\cdot \frac {1} {e^{2ah}}}{(\frac {ln29} {e^{ah}} + 29)^{3}}= 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} \frac {\frac {1} {e^{ah}} - \frac {1} {e^{2ah}}}{(\frac {ln29} {e^{ah}} + 29)^{3}}=
= 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} (\frac {1}{(\frac {ln29} {e^{ah}} + 29)^{3}}) \lim_{h \to 0} (\frac {1} {e^{ah}} - \frac {1} {e^{2ah}})


Da die Faktoren 58\cdot 29^{2}\cdot a^{2}\lim_{h \to 0} (\frac {1}{(\frac {ln29} {e^{ah}} + 29)^{3}}) alle positiv sind, kann ein möglicher Vorzeichenwechsel nur von dem Term \lim_{h \to 0} (\frac {1} {e^{ah}} - \frac {1} {e^{2ah}}) abhängig sein. Dieser wird nun im folgenden betrachtet:


\lim_{h \to 0} (\frac {1} {e^{ah}} - \frac {1} {e^{2ah}})= \lim_{h \to 0} (\frac {1} {e^{ah}} - \frac {1} {e^{(ah)^{2}}}) <0

Der Zähler ist kleiner 0, da gilt: e^{ah} < e^{(ah)^{2}}; dies liegt daran, dass der Faktor (ah)^{2}\; durch das Quadrat noch kleiner wird und somit der Term noch stärker gegen 0 strebt. Da jedoch nun die Kehrwerte gebildet werden, wird der Term \frac {1} {e^{(ah)^{2}}}\; größer als der Term \frac {1} {e^{(ah)}}\; Negativ ist der Zähler nun, da e^{ah}\; gegen 1- geht.

2. Möglichkeit: 3. Ableitung

Mit Hilfe der 3. Ableitung lässt sich sehr leicht herausfinden, ob an dem möglichen Wendepunkt auch wirklich einer vorhanden ist. Mann muss lediglich die 3. Ableitung an der Stelle des möglichen Wendepunkts bilden und schauen, ob die 3. Ableitung an dieser Stelle ungleich 0 ist. Falls dies der Fall ist, ist dies der eindeutige Beweis für die Existenz eines Wendepunkts.

Die 3. Ableitung:

f'''_{a} (t) = 58\cdot a^{2}\cdot \frac {(29\cdot e^{at}\cdot a - e^{2at}\cdot 2a)\cdot (e^{at} + 29)^{3} - 3\cdot (e^{at} + 29)^{2} \cdot e^{at}\cdot a\cdot (29\cdot e^{at} - e^{2at})} {((e^{at} + 29)^{3})^{2}} =

= 58\cdot a^{2}\cdot \frac {a\cdot(29\cdot e^{at} - 2\cdot e^{2at} )\cdot (e^{at} + 29)^{3} - 3\cdot e^{at}\cdot a\cdot (e^{at} + 29)^{2} \cdot (29\cdot e^{at} - e^{2at})} {(e^{at} + 29)^{2\cdot 3}} =
= 58\cdot a^{3}\cdot \frac {(29\cdot e^{at} - 2\cdot e^{2at} )\cdot (e^{at} + 29)^{3} - 3\cdot e^{at}\cdot (e^{at} + 29)^{2} \cdot (29\cdot e^{at} - e^{2at})} {(e^{at} + 29)^{6}} =
= 58\cdot a^{3}\cdot \frac {(29\cdot e^{at} - 2\cdot e^{2at} )\cdot (e^{at} + 29) - 3\cdot e^{at}\cdot (29\cdot e^{at} - e^{2at})} {(e^{at} + 29)^{4}} =
= 58\cdot a^{3}\cdot \frac {29\cdot e^{at}\cdot e^{at} + 29^{2} \cdot e^{at} - 2\cdot e^{2at}\cdot e^{2at} - 2\cdot 29\cdot e^{2at} - 3\cdot 29\cdot e^{at}\cdot e^{at} + 3\cdot e^{at}\cdot e^{2at}} {(e^{at} + 29)^{4}} =
= 58\cdot a^{3}\cdot \frac {29\cdot e^{2at} + 29^{2} \cdot e^{at} - 2\cdot e^{4at} - 58\cdot e^{2at} - 87\cdot e^{2at} + 3\cdot e^{3at}} {(e^{at} + 29)^{4}} =
= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{at} - 116\cdot e^{2at} + 3\cdot e^{3at} - 2\cdot e^{4at}} {(e^{at} + 29)^{4}}


Möglichen Wendepunkt in die 3. Ableitung einsetzen:

f'''_{a} (\frac {ln29} {a}) = 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{a \frac {ln29} {a}} - 116\cdot e^{2a \frac {ln29} {a}} + 3\cdot e^{3a \frac {ln29} {a}} - 2\cdot e^{4a \frac {ln29} {a}}} {(e^{a\frac {ln29} {a}} + 29)^{4}}=

= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{ln29} - 116\cdot e^{2\cdot ln29} + 3\cdot e^{3\cdot ln29} - 2\cdot e^{4\cdot ln29}} {(e^{ln29} + 29)^{4}}=
= 58\cdot a^{3}\cdot \frac {29^{2} \cdot e^{ln29} - 116\cdot e^{ln(29)^{2}} + 3\cdot e^{ln(29)^{3}} - 2\cdot e^{ln(29)^{4}}} {(e^{ln29} + 29)^{4}}=
= 58\cdot a^{3}\cdot \frac {29^{2} \cdot 29 - 116\cdot 29^{2} + 3\cdot 29^{3} - 2\cdot 29^{4}} {(29 + 29)^{4}}=
= 58\cdot a^{3}\cdot \frac {29^{3} - 29\cdot 4\cdot 29^{2} + 3\cdot 29^{3} - 2\cdot 29^{4}} {(58)^{4}}=
= 58\cdot a^{3}\cdot  \frac {29^{3} - 4\cdot 29^{3} + 3\cdot 29^{3} - 2\cdot 29^{4}} {(58)^{4}}=
= 58\cdot 29^{3} \cdot a^{3}\cdot  \frac {1 - 4 + 3 - 2} {(58)^{4}}=
= 58\cdot 29^{3} \cdot a^{3}\cdot  \frac {- 2} {(58)^{4}} \neq 0

\Rightarrow An der Stelle t = \frac {ln29} {a} ist eindeutig ein Wendepunkt nachgewiesen worden, da die 3. Ableitung an dieser Stelle ungleich 0 ist.

3. Möglichkeit: Vorzeichentabelle

Begründung, warum alle Wendepunkte auf einer Parallelen zur t-Achse liegen:

Zeichnen sie die Graphen G0,75 und G1 in ein und dasselbe Koordinatensystem und schlussfolgern Sie, welchen Einfluss der Parameter a auf den Verlauf der Graphen Ga hat

Der Graph

Graph-facharbeit1.png