Übungen1: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Übung 3: +aufgabe)
Zeile 47: Zeile 47:
  
 
<big>f(x) = - 2x<sup>2</sup></big>  (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.)  (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt  oberhalb des Graphen.)
 
<big>f(x) = - 2x<sup>2</sup></big>  (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.)  (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt  oberhalb des Graphen.)
 +
 +
<big>f(x) = 0,2x<sup>2</sup></big>  (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.)  (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt  oberhalb des Graphen.)
 
</div>
 
</div>

Version vom 15. Februar 2009, 23:50 Uhr

Quadratische Funktionen/Übungen1 - Quadratische Funktionen/Übungen2 - Quadratische Funktionen/Abschlustest - Quadratische Funktionen/Übungen3

Übung 1

Die Graph der Funktion f mit f(x)=ax² heißt Parabel . Ist a = 1, so heißt der Graph Normalparabel.
Quadratische Funktionen liegen symmetrisch zur x-Achse.
Der Punkt S (0;0) heißt Scheitel .
Für a>0 gilt: Je größer a ist, desto steiler ist die Parabel.
Für a>0 gilt: Je kleiner a ist, desto weiter ist die Parabel.







Übung 2

Ordne den Funktionsgraphen den richtigen Term zu

Parabel a 0 5a.jpg Parabel a 2a.jpg Parabel a 3a.jpg Parabel a 0 75a.jpg Parabel a 1 25a.jpg Parabel a 0 2a.jpg
0,5x2 2x2 3x2 0,75x2 1,25x2 0,2x2



Übung 3

f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)

f(x) = - 0,5x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)

f(x) = - 2x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)

f(x) = 0,2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)