Übungen zu Kehrsatz
Aus RMG-Wiki
Arbeitsauftrag:
- Hole dir das Übungsblatt zum Kehrsatz zum Satz des Pythagoras und zur Diagonalenberechnung
- Berechne die Aufgaben auf dem Blatt
- Vergleiche deine Lösungen mit denen auf der Seite
Aufgabe 1
a)
- h ist die längste Seite, also müsste sie auch die Hypotenuse sein
- Satz des Pythagoras ansetzen
- Der Satz des Pythagoras ist erfüllt
- Das Dreieck ist also rechtwinklig
b)
- k ist die längste Seite, also müsste sie auch die Hypotenuse sein
- Satz des Pythagoras ansetzen
- Der Satz des Pythagoras ist nicht erfüllt, da die Gleichung einen Widerspruch ergibt
- Das Dreieck ist also nicht rechtwinklig
c)
- i ist die längste Seite, also müsste sie auch die Hypotenuse sein
- Satz des Pythagoras ansetzen
- Der Satz des Pythagoras ist nicht erfüllt, da die Gleichung einen Widerspruch ergibt
- Das Dreieck ist also nicht rechtwinklig
d)
- i ist die längste Seite, also müsste sie auch die Hypotenuse sein
- Satz des Pythagoras ansetzen
- Der Satz des Pythagoras ist erfüllt
- Das Dreieck ist also rechtwinklig
Aufgabe 2
a)
- Um den Satz des Pythagoras zu testen, muss man zunächst die Länge der fehlenden Seiten berechnen
- Das Dreieck lässt sich in zwei kleinere rechtwinklige Dreiecke zerlegen
- In diesen rechtwinkligen Dreiecken darf man den Satz des Pythagoras ansetzen
- Da man nun alle Seiten kennt, kann man den Satz des Pythagoras für das Dreieck ansetzen
- b ist die längste Seite, also müsste sie die Hypotenuse sein
- Der Satz des Pythagoras ergibt einen Widerspruch
- Das Dreieck ist also nicht rechtwinklig
b)
- Um den Satz des Pythagoras zu testen, muss man zunächst die Länge der fehlenden Seiten berechnen
- Das Dreieck lässt sich in zwei kleinere rechtwinklige Dreiecke zerlegen
- In diesen rechtwinkligen Dreiecken darf man den Satz des Pythagoras ansetzen
- Da man nun alle Seiten kennt, kann man den Satz des Pythagoras für das Dreieck ansetzen
- c ist die längste Seite, also müsste sie die Hypotenuse sein
- Der Satz des Pythagoras ergibt eine wahre Aussage
- Das Dreieck ist also rechtwinklig
Aufgabe 3
- Um die Diagonale zu berechnen betrachtet man das rechtwinklige Dreieck
- Die Strecke ist noch unbekannt und man muss sie berechnen
- Hierfür betrachtet man das rechtwinklige Dreieck
- Man setzt den Satz des Pythagoras an
- Damit kann man den Satz des Pythagoras im rechtwinkligen Dreieck anwenden
- Die Raumdiagonale d ist also etwa 15,81cm lang
Wenn du fertig gerechnet hast geht es hier zum Ende des Lernpfads.