2007 V

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Leistungskurs Mathematik (Bayern): Abiturprüfung 2007
Analytische Geometrie V


Lösung von Ruth Burkard, Julian Weinbeer und Veronika Weinbeer


Angabe
gesamte Lösung


Aufgabe 1

Gegeben ist in einem kartesischen Koordinatensystem des IR3 die Ebenenschar Ek : kx1 + k 2x2 + 2x3- k2 = 0 , mit k ∈ IR als Scharparameter.

a) Ermitteln Sie, für welche Werte von k die Ebene Ek den Punkt P(1|2|-3)und zugleich den Punkt Q(0|1|0) enthält.

Aufgabe 1 a.jpg
4 BE


b) Die beiden Ebenen E2 und E-3 schneiden sich in einer Geraden g. Ermitteln Sie eine Gleichung von g in Parameterform und

den Schnittwinkel der beiden Ebenen auf eine Dezimale gerundet.

    [mögliches Teilergebnis: g: \vec x = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \cdot\begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}, λ ∈ IR ]

Bestimmung der Gleichung in Parameterform
1. Lösungsweg:
Aufgabe 1 b Loesung I.jpg
2. Lösungsweg:
Aufgabe 1 b Loesung II.jpg
3. Lösungsweg: aus a) weiß man, dass P und Q auf allen Ebenen liegen; deshalb einen Punkt als Orstvektor nehmen und aus beiden Punkten den Richtungsvektor bestimmen (schnellster Lösungsweg)


Berechnung des Schnittwinkels
Aufgabe 1 b Loesung Winkel.jpg
5 BE


c) Mit e(k) werde der Betrag des Abstands der Ebene Ek vom Koordinatenursprung bezeichnet. Zeigen Sie, dass                                 e(k)=\frac{k^2}{\sqrt{k^2+k^4+2}}  und dass e(k)<1 ist.

Aufgabe 1 c.jpg
4 BE


d) Es gibt zwei Scharebenen, deren Schnittwinkel mit der x3-Achse 30° besteht. Ermitteln Sie die zugehörigen Werte von k.

Aufgabe 1 d.jpg
5 BE

e) Untersuchen Sie, ob die Gerade g aus Teilaufgabe 1b senkrecht auf einer Ebene der Schar Ek steht.

Aufgabe 1 e.jpg
3 BE


Aufgabe 2:

Nun ist weiter die Kugel K mit dem Mittelpunkt M(1|2|3) und dem Radius r= 6 gegeben. Die Scharebene E-1 schneidet die Kugel K in einem Kreis ks mit dem Mittelpunkt N und dem Radius rs.

a) Berechnen Sie die Koordinaten N und den Radius rs

[Ergebnis: N(2|1|1); rs ={\sqrt{30}}]
Aufgabe 2 a.jpg
6 BE

b) Zeigen Sie, dass der Punkt R(3|6|-1) auf dem Schnittkreis ks liegt, und stellen Sie eine Gleichung der Tangentialebene T

auf, die die Kugel K im Punkt R berührt.
[mögliches Teilergebnis: T:x1+2x2-2x3-17=0]
Aufgabe 2 b.jpg
4 BE

c) Die Ebene E-1 und die Tangentialebene an die Kugel K in allen Punkten des Schnittkreises ks begrenzen einen geraden

Kreiskegel. Berechnen Sie das Volumen dieses Kegels.
Aufgabe 2 c.jpg
5 BE

d) Zeigen Sie, dass der Punkt U(3|-2|-1) auf der Kugel K und innerhalb des Kreiskegels liegt.

Aufgabe 2 d.jpg
4 BE