2007 II

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Leistungskurs Mathematik (Bayern): Abiturprüfung 2007
Infinitesimalrechnung II


Download der Originalaufgaben: Abitur 2007 LK Mathematik Bayern


Lösungen erstellt von: Peter Schott, Philipp Stich


Aufgabe 1

1. Gegeben ist die Funktion f:x\mapsto \frac{x}{ln x} mit dem maximalen Definitionsbereich Df = IR+ \ {1}. Der Graph von f wird mit Gf bezeichnet.


a) Untersuchen Sie das Verhalten von f an den Rändern des Definitionsbereichs. (Hinweis: \lim_{x \to \infty}  \frac{ln x}{x} = 0 darf ohne Beweis verwendet werden.)

Infini07-1a.jpg Kleine Anmerkung zu \lim_{x \to 1+} f(x):

\ln (x) strebt hier, analog zu \ln (x) beim Grenzwert für x\rightarrow 1-, genau genommen gegen 0+ statt gegen 0. Ist aber für das Ergebnis egal (+\infty).


b) Bestimmen Sie das Monotonieverhalten von f sowie Art und Lage des Extrempunktes E von Gf . [Zur Kontrolle:f'(x)=\frac{lnx-1}{(ln x)^2}]

Infini07-1b.jpg


c) Zeigen Sie, dass Gf einen Wendepunkt W besitzt, und berechnen Sie dessen Koordinaten.

Infini07-1c.jpg


d) Berechnen Sie \lim_{x \to 0+} f'(x) und skizzieren Sie Gf unter Verwendung der bisherigen Ergebnisse in ein Koordinatensystem.

Infini07-1d.jpg


e) Zeigen Sie:  \int\limits_{1}^{2}\frac{x}{x-1}dx = \infty. Was folgt für  \int\limits_{1}^{2}f(x)dx ? Begründen Sie Ihre Antwort. Dabei dürfen Sie ohne Nachweis verwenden, dass für x >1 gilt: ln x < x −1.

Infini07-1e.jpg
Erläuterung:
Sei \frac{x}{x-1} = g(x);
Dg = IR\{+1}

\Rightarrow deswegen muss hier \lim_{a \to 1} verwendet werden (uneigentliches Integral)!



Aufgabe 2

Ein kreiszylindrischer Becher, der zum Teil mit Wasser gefüllt ist, rotiert mit konstanter Rotationsgeschwindigkeit um seine Symmetrieachse. Die Oberfläche der Flüssigkeit ist eine Drehfläche, die durch Rotation einer Parabel entsteht. Die Symmetrieachse der Parabel fällt dabei mit der Symmetrieachse des Bechers zusammen. Zeichnung,Infini-II-07.jpg

Das Koordinatensystem ist so gewählt, dass die zu Abb. 1 gehörende Parabel die Gleichung y =\frac{H}{R^2}x^2 besitzt.

a) Betrachten Sie zunächst Abb. 1 und zeigen Sie mit Hilfe einer geeigneten Integration, dass folgende Aussage gilt: Das Volumen des Wassers ist im Bereich 0 ≤ y ≤ H halb so groß wie das Volumen eines Kreiszylinders mit Höhe H und Grundkreisradius R.

Infini07-2a.jpg


b) Die Rotationsgeschwindigkeit wird nun verringert. Die Wasseroberfläche nimmt dabei die in Abb. 2 dargestellte Form an. Zeigen Sie unter Verwendung der Aussage aus Teilaufgabe 2a, dass der obere Rand des Wassers so weit absinkt, wie der Scheitel ansteigt, dass also gilt: t = s .

Infini07-2b.jpg