Lösung von Teilaufgabe e

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Beweisführung zur n-ten Ableitung der Funktion fa durch vollständige Induktion

Beweise, dass
y=f_a^{(n)}(x)=(-1)^{n+1}\cdot(n-x+a)\cdot e^{a+2-x} die n-te Ableitung von f_a (x) = ( x - a )\cdot e^{a+2-x}ist. (Behauptung)

Hilfe zur vollständigen Induktion


1. Induktionsanfang:

Die erste Ableitung ist:  f^{'}_a (x) = ( x - a - 1 )\cdot (-e^{a + 2 - x}) (siehe Teilaufgabe a / Extrempunkte)

Die Behauptung stimmt damit überein:

f_a^{(1)}(x)=(-1)^{1+1}\cdot(1-x+a)\cdot e^{a+2-x}
=(-1)^{2}\cdot(1-x+a)\cdot e^{a+2-x}
=1\cdot(1-x+a)\cdot e^{a+2-x}
=(1-x+a)\cdot e^{a+2-x}
=(x-a-1)\cdot (-e^{a+2-x})


2. Induktionsschritt:

Anfangsgleichung: f_a^{(n)}(x)=(-1)^{n+1}\cdot(n-x+a)\cdot e^{a+2-x}

Zielgleichung: f_a^{(n+1)}(x)=(-1)^{(n+1)+1}\cdot((n+1)-x+a)\cdot e^{a+2-x}

Wenn die n-te Ableitung von fa für n stimmt, muss sie auch für n+1 stimmen.

Dies soll nun bewiesen werden.


Der Beweis stimmt, wenn f_a^{(n)'}(x)= f_a^{(n+1)}(x)


Um die erste Ableitung zu bekommen, muss man hier die Produktregel verwenden [Hilfe zur Produktregel]

f_a^{(n)'}(x)= (-1)^{n+1}\cdot((n-x+a)\cdot e^{a+2-x}\cdot (-1) + (-1)\cdot e^{a+2-x}
=(-1)^{n+1}\cdot (-1)\cdot e^{a+2-x}\cdot (n-x+a+1)
=(-1)^{n+1+1}\cdot e^{a+2-x}\cdot (n+1-x+a)
=(-1)^{(n+1)+1}\cdot ((n+1)-x+a)\cdot e^{a+2-x} = f_a^{(n+1)}(x)



Beweisführung durch Betrachtung der Ableitungen von f_a

Durch Betrachtung der Ableitungen und Integrale von f_a (x)\, lässt sich eine gewisse Regel erkennen.

Stammfunktion:     \;\;\; F_a (x) = ( x - a + 1 )\cdot e^{a + 2 - x}\cdot (-1)
Funktion:     \;\;\;\;\;\;\;\;\;\;\;\;\;\; f_a (x) = ( x - a )\cdot e^{a + 2 - x}
1. Ableitung:   \;\;\;\;\;\;\;\; \;\;\; f^{'}_a (x) = ( x - a - 1 )\cdot e^{a + 2 - x}\cdot (-1)
2. Ableitung:    \;\;\;\; \;\;\;\;\;\;f^{''}_a (x) = ( x - a - 2 )\cdot e^{a + 2 - x}
3. Ableitung:    \;\;\;\;\;\;\;\;\;\; f^{'''}_a (x) = ( x - a - 3 )\cdot e^{a + 2 - x}\cdot (-1)

Aus den gezeigten Ableitungen lässt sich erkennen, ausgehend von der Stammfunktion, dass für jede Ableitung der erste Faktor dieses Produkts (die Variablen in der Klammer) um eins abnimmt.
Außerdem wird bei jeder zweiten Ableitung eine Änderung des Vorzeichens verzeichnet. Das heißt, jede zweite Ableitung wird mit (-1) multipliziert.

\sum_{1}^\infty (-1)^{n}\cdot(x-a-n)\cdot e^{a+2-x}=
=\sum_{1}^\infty (-1)^{n}\cdot(-1)\cdot(n-x+a)\cdot e^{a+2-x}
=\sum_{1}^\infty (-1)^{n+1}\cdot(n-x+a)\cdot e^{a+2-x} = f_a^{(n)}(x)

Die durch die Überlegung entwickelte Formel für die n-te Ableitung von f_a(x)\, stimmt mit derjenigen, welche bewiesen werde sollte überein.
y=f_a^{(n)}(x)=(-1)^{n+1}\cdot(n-x+a)\cdot e^{a+2-x}

Diese Methode der Beweisführung ist kein echter Beweis, da nie alle Ableitungen in Betracht gezogen werden können, sondern nur ein kleiner Teil. Sie ist eher zum besseren Verstehen und Vorstellen vorhanden.