10a 2007 08

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Funktionen

Potenzfunktionen

Zeichne die Funktionen f(x) = x^n für n = 2,3,4,5... Was stellst du fest.
Untersuche dazu für n gerade und n ungerade
  1. Definitions- und Wertebereich
  2. gemeinsame Punkte
  3. Nullstellen
  4. Monotonie
  5. Symmetrie
Zeichne die Funktionen f(x) = x^z für z = -2, -3, -4, -5. Was stellst du fest.
Untersuche dazu für n gerade und n ungerade
  1. Definitions- und Wertebereich
  2. gemeinsame Punkte
  3. Nullstellen
  4. Monotonie
  5. Symmetrie

Mathematik zum Anfassen in Königsberg

MathezumAnfassen19 200.jpg
Weitere Bilder vom Besuch der Klassen 10a und 10f






Mathematik

200px Rund um den Kreis

Umfang

Der Pi-Song 1


  1. Messt von verschiedenen runden Gegenständen (z.B. Eimer, Teller, Tasse, Glas, Dose, CD, Münze, ...) jeweils den Durchmesser d und den Umfang U möglichst genau ab und notiert die Messungen in einer Tabelle.
  2. Bestimmt U , d auch aus folgendem Bibeltext im ersten Buch der Könige (Kap.7, Ver 23): »Hierauf fertigte er ein kreisrundes Becken an, das von einem Rand zum anderen 10 Ellen maß...,eine Schnur von 30 Ellen umspannte es.«
  3. Ergänzt die Messwerte in der Tabelle, indem ihr weitere Werte aus diesem interaktiven Arbeitsblatt (Aufgaben 1 und 2) übernehmt.
  4. Was fällt euch auf?
  5. Stellt eure Messwerte in einem Koordinatensystem dar und vergleicht euer Ergebnis mit diesem Applet.
  6. Was kann man über den Zusammenhang zwischen dem Umfang und dem Durchmesser von Kreisen aussagen?. Schreibt eure Überlegungen auf.
  7. Bestimmt das Verhältnis U : d, rundet das Ergebnis auf zwei Stellen nach dem Komma und ergänzt eure Tabelle.
  8. Versuche, eine Formel aufzustellen, die den Zusammenhang zwischen dem Umfang und dem Durchmesser von Kreisen beschreibt.
  9. Erstellt eine übersichliche Folie mit euren Ergebnissen.



Schülerlösung

Lösung zum download

Für alle, die noch mehr wissen wollen: Artikel über Pi in Wikipedia


Hilfsmittel: Runde Gegenstände, Schnur, Maßband



Fläche

Der Pi-Song 2


  1. Kästchen zählen: Bestimme den Flächeninhalt dieses Kreises: Kreisfläche bestimmen 200.png Klick dazu hier!
  2. Zeichnet auf Millimeterpapier Kreise mit verschiedenen Radien r und bestimmt den Flächeninhalt A ebenfalls durch Kästchen zählen.
  3. Notiert eure Messungen in einer Tabelle.
  4. Stellt die Messwerte in einem Koordinatensystem dar und vergleicht eure Ergebnisse mit folgendem Applet
  5. Was kann man über den Zusammenhang zwischen dem Radius und der Fläche von Kreisen aussagen? Schreibt eure Überlegungen auf.
  6. Bestimmt das Verhältnis A : r², rundet das Ergebnis auf zwei Stellen nach dem Komma und ergänzt eure Tabelle.
  7. Versuche, eine Formel aufzustellen, die den Zusammenhang zwischen der Fläche und dem Radius von Kreisen beschreibt.
  8. Erstellt eine übersichtliche Folie mir euren Ergebnissen.



Hilfsmittel: Millimeterpapier, Zirkel

Sozialkunde

Parteien-Verbände