Ähnlichkeit - Übung 4

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Aufgabe 1

Aufgabe:
Stelle fest, ob die Dreiecke ABC und A'B'C' ähnlich sind, wenn:
a) a = 5; b = 8; c = 10 und a' = 2,5; b' = 4; c' = 5
b) \alpha = 30°; \beta = 100° und \alpha' = 50°; \gamma' = 100°
c) a = 5; c = 8; \gamma = 100° und b' = 2,5; c' = 4; \gamma' = 100°
Tipp: Wenn du unsicher bist kann dir eine Skizze helfen, in der du die gegebenen Seiten bzw. Winkel farbig markierst!


a) Die beiden Dreiecke sind ähnlich, da sie im Verhältnis ihrer Seiten übereinstimmen (S : S : S - Satz).
\frac {a} {a'} = \frac {b} {b'} = \frac {c} {c'} = 2
b) Die beiden Dreiecke sind ähnich, da sie in zwei Winkeln übereinstimmen (WW - Satz).
\gamma = 180° - (\alpha + \beta) = 180° - (30° + 100°) = 50° = \alpha'
c) Dreieck.png

Aufgabe 2

Aufgabe:


Kreis1.png


Aufgabe 3

Aufgabe:


Quadrat.png


Wenn du fertig bist. HIER klicken!


zum Inhaltsverzeichnis