Leere Seite: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
<span style="color:#060">'''Wiederholung: Ökologie'''</span><br>
+
<span style="color:#060">'''Einstieg/Wiederholung'''</span><br>
 
+
Zur Erinnerung: Das langfristige Ziel dieser Einheit ist es, zu klären, wie ein Stück DNS die Ausprägung eines Merkmals (also z.B. eure Haarfarbe) beeinflussen kann.<br>
Zunächst zu den Grundlagen: Bei der Thematik "Ökologie" wird gelegentlich auf Wissen aus der zehnten Jahrgangsstufe zurückgegriffen. Auch im normalen Q11-Unterricht wiederhole ich diese Grundlagen nicht ausführlich, sondern verweise lediglich auf ein Skript aus der zehnten:<br>
+
In der letzten Einheit habt ihr den Aufbau der DNS kennengelernt. Bevor wir uns anschauen, wie dieser Aufbau nun ein sichtbares Merkmal beeinflussen kann, zunächst ein Zwischenschritt: <br>
 
<br>
 
<br>
'''Skript "Ökologie" (10. Jahrgangsstufe)''' als [[media:Ökologie_10_gesamt.pdf|pdf-Datei]]<br>
+
Euer aktueller Körper, in dem ihr steckt, besteht aus ca. 100 000 000 000 000 Zellen. Entstanden seid ihr aber alle zunächst aus einer einzigen befruchteten Eizelle. Das Erbgut in dieser befruchteten Eizelle musste sehr oft vervielfältigt werden, damit alle Zellen eures heutigen Körpers exakt das gleiche Erbgut enthalten und eine Einheit bilden. Ihr kennt den Prozess schon, der hierbei eine entscheidende Rolle spielt: '''Die Mitose'''. <br>
<br>
+
Die Hefteinträge sind zwar kurz, sollten aber verständlich sein. Es geht hauptsächlich darum, dass ihr euch unter bestimmten '''Begriffen''' etwas vorstellen und diese auch bei Erklärungen sicher verwenden könnt:
+
* Produzenten, Konsumenten, Destruenten
+
* Ökosystem, Biotop, Biozönose
+
* Biotische und abiotische Umweltfaktoren
+
 
+
Es wird im Kolloquium aber sicher keine Fragen geben: "Was bedeutet Biotop?"<br>
+
  
* Wenn ihr zu den '''Vitalitätskurven''' etwas machen möchtet, dann könnt ihr im neuen Wiki die Einheit '''Biologie5''' und '''Biologie6''' auf der folgenden Seite bearbeiten: [[https://rmgwiki.zum.de/wiki/Corona-Arbeitsaufträge_(Bio)_LUX#Arbeitsauftrag_Biologie5_.28verpflichtend.29 Hier klicken]]. Für einige Aufgaben ist dazu zwar das Buch aus der zehnten Jahrgangsstufe nötig, aber diese Aufgaben könnt ihr überspringen.<br>
+
Sucht das Arbeitsblatt zum Thema '''Mitose''' heraus (auch im Buch wäre eine Abbildung)! Analysiert die einzelnen Schritte noch einmal und formuliert dann '''einen Satz''', der die relativ simple Frage beantwortet:
  
* Das '''Konkurrenzausschlussprinzip''', das stark mit dem Begriff der '''ökologischen Nische''' zusammenhängt, ist für mich aus biologischer Sicht ein äußerst spannendes Prinzip. In der zehnten Jahrgangsstufe mache ich dazu viele Beispiele. Im Kolloquium habe ich jedoch noch nie darauf Bezug genommen und habe es auch nicht vor. Falls ihr trotzdem dazu mehr wissen möchtet: Das Video von simpleclub ist ganz o.k.:<br>
+
* Was passiert in der Meiose (weniger auf den Mechanismus eingehen, sondern auf das Ergebnis)?
{{#ev:youtube |3rv1OKP1cvg}}<br>
+
  
* Den Punkt "Populationsschwankungen" bespreche ich in der Q11 erneut (auch in der folgenden Einheit).
 
 
</div>
 
</div>
  
 
<br>
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<span style="color:#007">'''Neu: Populationsentwicklung'''</span><br>
 
Dieser Punkt soll folgende Fragen klären:
 
* Welche '''mathematischen Grundsätze''' stecken hinter der '''zahlenmäßigen Entwicklung''' einer Population?
 
* Welche '''Umweltfaktoren''' spielen eine Rolle?
 
* Kann man das '''Fortpflanzungsverhalten''' von Tieren, welches eng mit der Populationsentwicklung zusammenhängt, in unterschiedlich Kategorien einteilen?
 
<br>
 
'''Mathematische Grundsätze: Exponentielles Wachstum'''<br>
 
Stellt euch folgendes Beispiel vor: Vor 100 Jahren gerät ein Handelsschiff in einen Sturm, erleidet Schiffbruch und geht mitten im Meer unter. Auf dem Schiff befanden sich versteckt zwischen den Vorräten der Besatzung etliche Ratten. Nahezu alle sterben beim Sinken des Schiffes, lediglich ein Pärchen kann sich im Sturm lange genug über Wasser halten, bis es schließlich auf eine von Tieren nahezu unbewohnte Insel gespült wird. Es gibt etliche Pflanzen, die Früchte produzieren und gelegentlich nisten auch Vögel auf der Insel, von deren Eiern sich die Ratten gelegentlich welche stibitzen können. Die Ratten sind letztlich in einem "Paradies" gelandet: Es gibt genügend Ressourcen und keine Feinde. Nehmt an, dass dieses Ratten-Paar in einem Jahr acht Jungtiere zur Welt bringt, gleich viele Männchen und Weibchen. Von dieser Familie sterben zwei Tiere (idealerweise ein Männchen und ein Weibchen) im Verlauf des Jahres z.B. weil sie zu neugierig waren. Nach einem Jahr befinden sich folglich acht Tiere auf der Insel.
 
* Berechnet, wie viele Tiere sich nach zwei, drei, vier, fünf und sechs Jahren auf der Insel befinden, wenn sich an den Bedingungen (jeweils 8-2 Tiere Zuwachs pro Paar ) ändert!
 
* Zeichnet eine Grafik (oder lasst Excel eine Grafik zeichnen), die die Anzahl der Tiere (die "Populationsgröße") auf der Insel in Abhängigkeit von der Zeit zeigt!
 
 
</div><br>
 
  
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
{{versteckt|
[[Datei:Öko_PopEntwicklung_exponent.jpg|800px]]<br>
+
Die Meiose ist ein Abschnitt während der Zellteilung, bei der das Erbgut eines Zellkerns in zwei gleich große Portionen aufgeteilt wird, die jeweils in den beiden entstehenden Tochterzellen landen. <br>
Es kann sein, dass ihr zu anderen Zahlenwerten gekommen seid. Entscheidend ist die Form der Kurve: Sie zeigt ein typisch '''exponentielles Wachstum''': Je länger der betrachtete Zeitraum ist, desto schneller steigt die Anzahl der Tiere. Die Mathematik zur Beschreibung dieser Kurve ist nicht trivial und soll hier an dieser Stelle keine große Rolle spielen. Entscheidend ist, dass ihr erkennt, welche Parameter Einfluss auf den Verlauf der Kurve haben: Die '''Anzahl der Ausgangsindividuen N<sub>0</sub>''', die '''Geburtenrate (b)''' ('''b'''irth), die '''Sterberate (d)''' ('''d'''eath) und die '''Zeit (t)'''. Aus der Geburten- und Sterberate lässt sich die sogenannte '''Zuwachsrate (r)''' bestimmen. Diese Größe wird später noch einmal eine wichtige Rolle spielen.
+
An dem oben stehenden Satz erkennt man, dass folgende Aspekte berücksichtigt wurden (überprüft, ob euch das klar ist!):
 +
* Die Meiose ist nur ein Abschnitt der Zellteilung
 +
* Bei der Meiose wird das Erbgut im Zellkern halbiert
 +
* Die Tochterzellen enthalten nach der Meiose zunächst nur die Hälfte des ursprünglichen Erbguts.
 
}}
 
}}
 
</div>
 
</div>
Zeile 48: Zeile 27:
 
<br>
 
<br>
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
'''Mathematische Grundsätze: Logistisches Wachstum'''<br>
+
'''Vorüberlegungen 1'''<br>
Selbstverständlich kann die vorher gezeichnete Kurve nicht allgemein gelten. Bleiben wir beim Beispiel mit den Ratten auf einer einsamen Insel: Innerhalb weniger Jahre wäre die gesamte Oberfläche der Insel komplett mit Ratten bedeckt. Dieser Zustand wird sich in der Realität nie einstellen. Grund dafür sind sogenannte '''dichteabhängige Faktoren''', die dafür Sorgen, dass bei einer hohen Dichte an Tieren die '''Geburtenraten''' zurückgeht bzw. die '''Sterberate''' steigt, auf jeden Fall also die '''Wachstumsrate (r)''' sinkt.<br>
+
Die Tochterzellen einer Zelle, die sich soeben geteilt hat, besitzen also nur die Hälfte des "normalen" Erbguts. Die folgende Abbildung verdeutlicht die Situation noch einmal an einem Chromosom. Macht euch anhand dieser Abbildung noch einmal klar: Aus wie vielen DNS-Fäden besteht das Erbgut eines Menschen? <u>Ohne</u> '''numerische Chromosomenaberration'''! (was war das noch mal?) <br>
Überlege selbst, welche Faktoren das sein könnten und wie (über welche Mechanismen) diese Faktoren die Geburtenrate bzw. die Sterberate beeinflussen!
+
[[Datei:Repli_Vgl_Chromo_DNS.jpg|800px]]
 
</div><br>
 
</div><br>
  
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
{{versteckt|
* Verfügbarkeit von Ressourcen: Wenn viele Ratten vorhanden sind, gibt es für jede einzelne Ratte weniger (z.B.) zu Fressen. Im einfachsten Fall könnten Tiere verhungern ('''d''' steigt). Es könnte aber auch sein, dass die Tiere versuchen, andere Sachen zu fressen und sich dabei vergiften ('''d''' steigt). Oder sie finden einfach sehr wenig zu fressen, die Weibchen gebären keine oder nur noch weniger Jungtiere ('''b''' sinkt) bzw. sie sind nicht in der Lage ihre Jungtiere mit genügend Milch zu versorgen und etliche sterben ('''d''' steigt).
+
* Numerische Chromosomenaberration: Abweichung von der "normalen Anzahl" an Chromosomen. Bsp.: Trisomie-21, Turner-Syndrom, Klinefelter-Syndrom
* Stress-Level steigt: Vor allem bei Tieren, die ein Revier ausbilden, ist der Aufwand zum Verteidigen dieses Reviers größer, wenn es viele Tiere (also Rivalen, Konkurrenten) gibt. Untersuchungen belegen, dass Stress die Sterberate erhöht. Die genauen Mechanismen sind vielfältig, z.B. führt eine andauernd starke Belastung des Herz-Kreislaufsystems zu Herzinfarkt.
+
* Normalerweise: '''23 Chromosomenpaare''' entspricht '''46 einzelnen Chromosomen''' entspricht '''92 Chromatiden'''. Ein Chromatid entspricht einem DNS-Faden, also besteht das Erbgut eines Menschen normalerweise aus '''92 DNS-Fäden'''.
* Parasiten und Krankheitserreger: Wenn viele Tiere eng zusammenleben, ist es für Parasiten und Krankheitserreger leichter sich zu verbreiten. Weil die Kontakthäufigkeit von befallenen/infizierten Tieren mit nicht befallenen/infizierten steigt. Das kann die Sterberate erhöhen, bzw. die Geburtenrate senken, wenn der Körper des schwangeren oder säugenden Weibchens ausgezehrt ist.
+
 
}}
 
}}
 
</div>
 
</div>
Zeile 63: Zeile 41:
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
Zusammengefasst bedeutet das: In unserem theoretischen Beispiel von schiffbrüchigen Ratten würden nach einer exponentiellen Vermehrungsphase nach und nach dichteabhängige Faktoren immer stärker wirken, die dazu führen, dass die Wachstumsrate immer stärker sinkt. Im theoretischen Idealfall nähert sich die Anzahl der Tiere einem Grenzwert an, bei dem genauso viele Tiere sterben, wie neu geboren werden. Die Anzahl der Tiere in einem bestimmten Gebiet ändert sich dann nicht mehr. Diese Anzahl an Tieren, die in einem bestimmten Gebiet dauerhaft stabil überleben kann, nennt man '''Umweltkapazität K'''.<br>
+
'''Vorüberlegungen 2'''<br>
Überführt man diese Überlegungen in die Grafik von einem typischen Populationswachstum, ergibt sich das folgende Bild, dessen Verlauf als '''logistisches Wachstum''' bezeichnet wird:<br>
+
Damit sich eine Tochterzelle erneut teilen kann, muss das "halbe Erbgut" zunächst wieder verdoppelt werden. Dieser Prozess nennt sich '''Replikation'''. Die Forscher, die maßgeblich an der Entschlüsselung dieses Prozesses mitgewirkt haben, waren Matthew Meselson und das Ehepaar Mary und Frank Stahl (müssten alle noch leben). Das Meselson-Stahl-Experiment soll hier nachempfunden werden.<br>
[[Datei:Öko_PopEntwicklung_logistisch.jpg|800px]]<br>
+
Rein theoretisch gibt es drei verschiedene Möglichkeiten wie ein DNS-Faden repliziert (verdoppelt) werden kann:
</div><br>
+
* konservativ: Könnte man mit einem Kopierer vergleichen. Es gibt ein Orginal, das unverändert bleibt und ein Duplikat, das aus neuen Bausteinen zusammengebastelt wird.
 
+
* semikonservativ: Bei der DNS sind die beiden Einzelsträng komplementär. Das bedeutet, wenn ich den einen Einzelstrang kenne, kann ich den fehlenden einfach erzeugen. Das ermöglich eine semikonservative Replikation: Die doppelsträngige DNS wird in ihre zwei Einzelstränge getrennt, und es wird jeweils ein neuer ergänzt.
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
* dispers: Das könnte man wohl am ehesten mit... "irgendwie" oder "durcheinander" übersetzen. Gemeint ist: Das Original wird zerstückelt und mit neuen Bausteinen zu zwei Abbildungen des Originals wieder zusammengesetzt. Dafür gibt es in unserer Lebensumwelt kein vernünftiges Beispiel.
'''Wiederholung'''<br>
+
Die folgenden Abbildungen zeigen einen grafischen Überblick über diese drei Varianten: <br>
Diese Kurve sollte euch nicht neu sein. Bereits in der 8. Klasse taucht diese Kurve beim Wachstum von Bakterien auf. Bakterien vermehren sich durch Zweiteilung, die Anzahl verdoppelt sich also immer nach einem bestimmten Zeitintervall (z.B. 20 min.). Vielleicht habt ihr schon einmal Joghurt hergestellt: Man gibt einen Löffel reinen Joghurt (der Milchsäure-Bakterien enthält) in ein Glas Milch und stellt das über Nacht an einen warmen Ort. Am nächsten Tag ist aus der Milch Joghurt geworden. Im Prinzip haben sich die Bakterien exponentiell vermehrt, dabei Milchsäure hergestellt und diese wiederum lässt das Eiweiß in der Milch gerinnen. Man erhält eine feste Masse: Joghurt.<br>
+
[[Datei:Repli_Mechanismen_denkbareVarianten.jpg|800px]]<br>
In eurem Buch (Q11) ist dargestellt, dass sich das typische Wachstum einer solchen Mikroorganismen-Population noch um zwei weitere Phasen ergänzen lässt. Neben dem exponentiellen Wachstum und der abflachenden Annäherung an die Umweltkapazität K kann man noch eine Phase davor und eine danach definieren. Lest auf der Seite 75 die rechte Spalte (Entwicklung einer neu gegründeten Population) und begründet den Verlauf dieser beiden Phasen!<br>
+
[[Datei:Repli_Mechanismen_denkbareVarianten_einfach.jpg|800px]]<br>
[[Datei:Öko_PopEntwicklung_WH_MikroOrg.jpg|800px]]<br>
+
</div><br>
+
 
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
{{versteckt|
+
* A: '''Anpassungsphase''': Werden Mikroorganismen in ein neues Medium überführt, beginnt nicht sofort ein logarithmisches Wachstum. Zunächst müssen in jeder Zelle Anpassungen vorgenommen werden, um mit den Inhaltsstoffen des Mediums klar zu kommen. In dieser Phase wird die Produktion bestimmter Enzyme angepasst und die Teilungsrate ist noch gering.
+
* D: '''Absterbephase''': In einem begrenzten Becherglas kommt es typischerweise zum Absterben einer solchen Kultur, weil letztlich die Nährstoffe irgendwann komplett verbraucht sind (sofern sie aus den abgestorbenen Individuen nicht recycelt werden können) bzw. sich Giftstoffe anreichern. Das ist z.B. auch der Grund, warum man keinen Wein herstellen kann, der mehr als 16,5% Alkohol enthält (zumindest nicht auf natürlichem Weg). Der Alkohol wird von Mikroorganismen als Abfallprodukt gebildet. Je nach Sorte gibt es einen maximalen Gehalt an Alkohol, ab dem die Hefen selbst absterben.
+
}}
+
</div>
+
 
<br>
 
<br>
 
+
Das Problem an dieser Darstellung: Auf den Bildern könnt ihr aufgrund von Farben sehr schön sehen, welcher Teil der DNS alt ist und welcher neu. In der Realität geht das nicht! Erstens gibt es überhaupt kein Mikroskop, mit dem man einen DNS-Strang überhaupt sehen könnte und selbst wenn, wüsste man nicht, was an einem DNS-Strang alt und was neu ist... <br>
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
Wir haben schon oft über solche Phänomene gesprochen: Man braucht ein Experiment, mit dem man etwas sichtbar machen kann, was eigentlich nicht sichtbar ist. Und genau hier kommt das Experiment von Meselson und Stahl ins Spiel. Sie machten sich folgenden Effekt zu Nutze: Isoliert man DNS aus Bakterien, kann man sie in einem Reagenzglas auf eine Salz-Lösung auftragen und den Ansatz stark zentrifugieren. Je nachdem, wie "schwer" (das ist nicht ganz korrekt, aber ich bleibe mal bei diesem Begriff) die DNS ist, wird sie beim Zentrifugieren durch die Zentrifugalkraft im Reagenzglas weiter nach unten gedrückt (oder gezogen, wie ihr wollt).<br>
'''Realistisches Wachstum'''<br>
+
[[Datei:Repli_MeselsonStahl_VDesign.jpg|800px]]<br>
Betrachtet man das Populationswachstum von größeren Tieren, so stellt man nahezu immer fest, dass sich kein mathematisch perfektes, logistisches Wachstum ergibt. Sehr häufig '''schwankt''' die Anzahl der Tiere um die '''Umweltkapazität K'''. Auch dafür sind die Gründe vielfältig. Zunächst soll hier wieder ein sehr einfaches Beispiel herangezogen werden: Bleiben wir bei den schiffbrüchigen Ratten. Nehmen wir an, die Umweltkapazität auf der Insel beträgt 10.000 Tiere. Viele Jahre lang leben tatsächlich ungefähr so viele Tiere auf der Insel. In einem Jahr bricht die Zahl plötzlich stark ein. Stellt eine Hypothese auf, welcher Faktor für einen solchen Rückgang verantwortlich sein könnte. Bedingung: Es darf kein dichteabhängiger Faktor sein, der bereits besprochen wurde (also z.B. der Ausbruch einer Seuche o.ä.)!
+
Wenn man das Experiment mehrfach wiederholt, kommt logischerweise immer das gleiche Ergebnis heraus: Die isolierte DNS wandert immer die gleiche Strecke im Reagenzglas nach unten. Meselson und Stahl haben nun aber einen Weg gefunden, die DNS in den Bakterien zu manipulieren. Sie konnten sie '''schwerer''' machen als normal: Sie ließen die Bakterien auf einem Medium wachsen und sich vermehren, welches '''schwere Stickstoff-Atome''' enthielt (man symbolisiert schweren Stickstoff mit <sup>15</sup>N). Auch die DNS enthält Stickstoff-Atome. Normalerweise leichten Stickstoff (<sup>14</sup>N), weil nur der in der Natur in großen Mengen vorkommt. Nachdem den Bakterien im Versuch aber nur '''schwerer Sticktstoff''' <sup>15</sup>N zur Verfügung stand, mussten sie diesen zum Aufbau ihrer DNS heranziehen. Lässt man die Bakterien lange genug in diesem <sup>15</sup>N-Medium wachsen, enthalten sie nach einiger Zeit nur noch '''"schwere DNS"'''. Zentrifugiert man nun die DNS von diesen Bakterien, stellt man tatsächlich fest, dass diese DNS etwas weiter nach unten gedrückt/gezogen wird als die '''leichte DNS''' der ursprünglichen Bakterien.<br>
</div>
+
[[Datei:Repli_MeselsonStahl_U_N14_N15.jpg|800px]]<br>
 
<br>
 
<br>
 
+
Was bringt das jetzt?<br>
<div style="border: 1px solid #FF0000; padding:7px;">
+
{{versteckt|
+
Zum Beispiel könnte ein später Wintereinbruch die Blüte einer wichtigen Futterpflanze gestört haben, wodurch es in einem Jahr viel weniger Früchte als üblich gibt. Solche Faktoren, die mit der Dichte der Population nichts zu tun haben (oft handelt es sich um abiotische Umweltfaktoren), nennt man '''dichteunabhängige Faktoren'''. Sie beeinflussen eher die '''Umweltkapazität K'''.<br>
+
* Überlegt euch weitere solche Szenarien mit dichteunabhängigen Faktoren!
+
}}
+
</div>
+
 
<br>
 
<br>
 +
Noch gar nichts! Man kann erstmal nur unterscheiden, ob die DNS schwer oder leicht ist. Aber der Versuch war noch nicht zu Ende. Meselson und Stahl überführten nun Bakterien, die ihr Leben lang auf Medium mit schwerem Stickstoff <sup>15</sup>N gewachsen waren, auf ein neues Medium, das nur leichten Stickstoff <sup>14</sup>N enthielt. Dort durften die Bakterien genau so lange bleiben, bis sie sich '''einmal geteilt''' hatten, das Erbgut also genau '''einmal verdoppelt''' worden war.<br> Anschließend wurde die DNS wieder isoliert und zentrifugiert.<br>
 +
<br>
 +
Welches Ergebnis sollte man erhalten, bei:
 +
* einer konservativen,
 +
* einer semikonservativen und
 +
* einer dispersen
 +
Replikation?
 +
</div><br>
  
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
{{versteckt|
* Regenmenge: Beeinflusst Wachstum von Gras/Pflanzen, was von vielen Tieren als Nahrung genutzt wird.
+
* konservativ: Es sollte eine Bande mit schwerer und eine Bande mit leichter DNS auftauchen. Nachdem beim konservativen Mechanismus die alte (schwere) DNS erhalten bleiben würde und eine neue (leichte) DNS erzeugt werden würde, müsste man diese beiden Banden finden.
* Temperatur: Mehr oder weniger Frost hat oft massive Auswirkungen auf das Leben in einem Gebiet
+
* semikonservativ: Es sollte nur eine Bande auftauchen; und zwar zwischen der Stelle, an der normalerweise die schwere DNS auftauchen würde und der der Stelle, an der normalerweise die leichte DNS auftauchen würde. Beim semikonservativen Mechanismus wird die alte (schwere) DNS in der Mitte geteilt und jeweils eine Hälfte durch neue Bausteine ergänzt. Das bedeutet, '''alle''' DNS-Stränge sind gleich (halb schwer, halb leicht, also: mittelschwer).
* Nährstoffeintrag: Zum Beispiel durch Überflutungen oder Phänomene wie El Nino können Landstriche oder Meeresgebiet plötzlich viel mehr oder weniger Lebewesen mit Nahrung versorgen
+
* dispers: Nachdem hier alle möglichen Varianten denkbar sind, sollten viele verschiedene DNS-Varianten auftauchen. Es sollte also keine klare Bande entstehen, sondern eher ein verschwommener Fleck
 +
Das tatsächliche Ergebnis seht ihr hier:<br>
 +
[[Datei:Repli_MeselsonStahl_VErgebnis.jpg|800px]]<br>
 +
Welcher Replikationsmechanismus liegt also vor?
 
}}
 
}}
</div>
 
<br>
 
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
'''Schwankungen'''<br>
 
In eurem Buch findet ihr auf der S. 76 zwei Grafiken, die Populationsdichten zeigen. Beschreibt diese Grafiken!
 
 
</div>
 
</div>
 
<br>
 
<br>
Zeile 114: Zeile 82:
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
{{versteckt|
* Grafik oben: Die Grafik zeigt die Anzahl der pro Jahr erlegten Hasen in Liechtenstein (was als Maß für die Anzahl der in diesem Gebiet lebenden Tiere herangezogen wird) im Zeitraum von 1840 bis 1910. Man erkennt starke Fluktuationen.
+
Der semikonservative
* Grafik unten: Die Grafik zeigt die Bestandsdichte von Wühlmäusen im Zeitraum von 1995 - 2009. Man erkennt eine regelmäßige Schwankung, auch Oszillation genannt, im Rhythmus von 3 Jahren.
+
Die Ursachen für diese Schwankungen sind im Buch schön beschrieben und hängen mit den hier bereits genannten Faktoren zusammen. Falls dazu Fragen auftauchen sollten, stellt sie mir bitte per E-Mail.
+
 
}}
 
}}
 
</div>
 
</div>
Zeile 122: Zeile 88:
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
'''Unterschiedliche Fortpflanzungsstrategien'''<br>
+
'''Wie funktioniert´s?'''<br>
Man unterscheidet bei der Art und Weise, wie sich Tiere fortpflanzen und wie sie mit ihrem Nachwuchs umgehen zwischen '''K- und r-Strategen'''. Wobei diese Begriffe nur zwei Extreme darstellen. Viele Tiere verfolgen eine Strategie, die irgendwo dazwischen liegt.<br>
+
Schaut das Video, welches zeigt, wie die Replikation auf molekularer Ebene abläuft! Beantwortet während des Videos bzw. danach folgende Fragen: <br>
[[Datei:Öko_PopEntwicklung_K_und_r_Strategen.jpg|800px]]<br>
+
* Was macht die Helicase?
Das folgende Video erklärt die Unterschiede. Macht euch während des Videos Notizen zu folgenden Punkten:
+
* Wie heißt das Enzym, das aus RNA-Stückchen einen kleinen Primer formt?
* Wofür stehen das K und das r?
+
* Warum kann der "leading-strand" (Vorwärts-Strang) in einem Stück ergänzt werden, der "lagging-strand" (Rückwärts-Strang) nicht?
* Fertigt eine Tabelle an, in der ihr typische Merkmale von K- und typische Merkmale von r-Strategen festhaltet!
+
* Was ist ein Okazaki-Fragment?
* Notiert zwei weitere Beispiel für Tiere, die eher als K- bzw. eher als r-Strategen genannt werden!
+
* Was macht die Ligase?
(Um euch nicht zu enttäuschen: Das Vorschau-Bild vermittelt einen völlig falschen Eindruck vom Video. Es werden keine Menschen darin zu sehen sein!)<br>
+
{{#ev:youtube |TNKWgcFPHqw}}<br>
{{#ev:youtube |GoCaakIPOrc}}<br>
+
 
</div>
 
</div>
 
<br>
 
<br>
Zeile 136: Zeile 101:
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
{{versteckt|
* Das K steht für die Umweltkapazit K. Das r für die Wachstumsrate r.
+
* Sie entdrillt die DNS-Doppelhelix und trennt die beiden Einzelstränge voneinander.
* Tabelle: s. Skript (ihr könnt auch einen Screenshot von der Tabelle im Video machen)
+
* Primase
* weiter r-Strategen: Mäuse, Kaninchen. Weitere K-Strategen: Wale, Menschenaffen.
+
* Weil die Polymerase nur in eine Richtung arbeiten kann (am neu entstehenden Strang die Nukleotide von 5´ nach 3´ verknüpfen), auf dem Vorwärtsstrang kann die Polymerase daher der Helicase "hinterher" laufen, auf dem Rückwärtsstrang muss gewartet werden, bis ein neuer Primer erstellt wurde, erst dann kann die Polymerase "von der der Helicase weg" arbeiten.
 +
* Die noch nicht miteinander verknüpften doppelsträngigen Abschnitte auf dem Rückwärtsstrang
 +
* Sie schließt die Lücke im Zucker-Phosphat-Gerüst der neu synthetisierten Einzelstränge.
 
}}
 
}}
</div>
 
<br>
 
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
'''Lotka-Volterra-Regeln'''<br>
 
Noch einmal zurück zu den Schwankungen in der Populationsdichte. Genauer gesagt zu den '''periodischen''' Schwankungen oder '''Oszillationen'''. Zwei Forscher haben unabhängig voneinander eher theoretische Modelle entwickelt, die diese Oszillationen beschreiben können: Die drei Lotka-Volterra-Regeln.<br>
 
Im Video wird am Anfang sehr schön beschrieben, dass in einer realen Umwelt die Bedingungen dieser theoretischen Modelle so gut wie nie erfüllt sind. Trotzdem lassen sich zumindest manchmal einige Effekte in der Natur damit erklären.<br>
 
{{#ev:youtube |wxdAH84imIw}}<br>
 
 
</div>
 
</div>
 
<br>
 
<br>
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
<span style="color:#060">'''- Geschafft -'''</span><br>
+
<span style="color:#060">'''Hausaufgabe'''</span><br>
Die Inhalte dieser Einheit stellen die Basis für das Kapitel "Ökologie" dar. Daneben gibt es im Lehrplan noch den Punkt "Anthropogene Einflüsse...", also Einflüsse des Menschen auf biologische Systeme. Dazu gibt es unzählige Beispiele, die fachlich jedoch nicht besonders schwierig sind. Im Unterricht habe ich dazu etliche Bilder und erzähle hauptsächlich episodisch von den Folgen, die eingetreten sind, nachdem der Mensch irgendetwas verändert hat. Ich werde im Kolloquium nicht nach einem konkreten Effekt fragen, also z.B.: "Erläutern Sie die ökologischen Folgen des Baumwollanbaus in der Nähe des Aralsees!"<br>
+
Lesen: Buch, S. 63 - 65 (ohne den blauen Zettelkasten)<br>
Ihr solltet aber IRGENDEIN selbst gewähltes Beispiel nennen können, also z.B.: "Zeigen Sie anhand eines selbst gewählten Beispiels auf, warum der Mensch gezielte Eingriffe in Ökosysteme vornimmt und welche Konsequenzen das haben kann." (oder so ähnlich).
+
Aufgabe: Beschreibe das sichtbare Ergebnis, wenn man die Bakterien im Versuch von Meselson und Stahl nicht einen Teilungszyklus lang, sondern zwei Teilungszyklen lang auf Medium mit leichtem Stickstoff wachsen lässt!
Es klingt zwar viel, wenn ich euch sage, dass hier viele Beispiele auf den Seiten 82 - 92 stehen. Aber wie gesagt, ihr müsst das ja nicht auswendig lernen.
+
 
</div>
 
</div>
 
<br>
 
<br>

Version vom 23. April 2020, 17:24 Uhr

Seite noch im Aufbau!

Einstieg/Wiederholung
Zur Erinnerung: Das langfristige Ziel dieser Einheit ist es, zu klären, wie ein Stück DNS die Ausprägung eines Merkmals (also z.B. eure Haarfarbe) beeinflussen kann.
In der letzten Einheit habt ihr den Aufbau der DNS kennengelernt. Bevor wir uns anschauen, wie dieser Aufbau nun ein sichtbares Merkmal beeinflussen kann, zunächst ein Zwischenschritt:

Euer aktueller Körper, in dem ihr steckt, besteht aus ca. 100 000 000 000 000 Zellen. Entstanden seid ihr aber alle zunächst aus einer einzigen befruchteten Eizelle. Das Erbgut in dieser befruchteten Eizelle musste sehr oft vervielfältigt werden, damit alle Zellen eures heutigen Körpers exakt das gleiche Erbgut enthalten und eine Einheit bilden. Ihr kennt den Prozess schon, der hierbei eine entscheidende Rolle spielt: Die Mitose.

Sucht das Arbeitsblatt zum Thema Mitose heraus (auch im Buch wäre eine Abbildung)! Analysiert die einzelnen Schritte noch einmal und formuliert dann einen Satz, der die relativ simple Frage beantwortet:

  • Was passiert in der Meiose (weniger auf den Mechanismus eingehen, sondern auf das Ergebnis)?


Die Meiose ist ein Abschnitt während der Zellteilung, bei der das Erbgut eines Zellkerns in zwei gleich große Portionen aufgeteilt wird, die jeweils in den beiden entstehenden Tochterzellen landen.
An dem oben stehenden Satz erkennt man, dass folgende Aspekte berücksichtigt wurden (überprüft, ob euch das klar ist!):

  • Die Meiose ist nur ein Abschnitt der Zellteilung
  • Bei der Meiose wird das Erbgut im Zellkern halbiert
  • Die Tochterzellen enthalten nach der Meiose zunächst nur die Hälfte des ursprünglichen Erbguts.


Vorüberlegungen 1
Die Tochterzellen einer Zelle, die sich soeben geteilt hat, besitzen also nur die Hälfte des "normalen" Erbguts. Die folgende Abbildung verdeutlicht die Situation noch einmal an einem Chromosom. Macht euch anhand dieser Abbildung noch einmal klar: Aus wie vielen DNS-Fäden besteht das Erbgut eines Menschen? Ohne numerische Chromosomenaberration! (was war das noch mal?)
Repli Vgl Chromo DNS.jpg


  • Numerische Chromosomenaberration: Abweichung von der "normalen Anzahl" an Chromosomen. Bsp.: Trisomie-21, Turner-Syndrom, Klinefelter-Syndrom
  • Normalerweise: 23 Chromosomenpaare entspricht 46 einzelnen Chromosomen entspricht 92 Chromatiden. Ein Chromatid entspricht einem DNS-Faden, also besteht das Erbgut eines Menschen normalerweise aus 92 DNS-Fäden.


Vorüberlegungen 2
Damit sich eine Tochterzelle erneut teilen kann, muss das "halbe Erbgut" zunächst wieder verdoppelt werden. Dieser Prozess nennt sich Replikation. Die Forscher, die maßgeblich an der Entschlüsselung dieses Prozesses mitgewirkt haben, waren Matthew Meselson und das Ehepaar Mary und Frank Stahl (müssten alle noch leben). Das Meselson-Stahl-Experiment soll hier nachempfunden werden.
Rein theoretisch gibt es drei verschiedene Möglichkeiten wie ein DNS-Faden repliziert (verdoppelt) werden kann:

  • konservativ: Könnte man mit einem Kopierer vergleichen. Es gibt ein Orginal, das unverändert bleibt und ein Duplikat, das aus neuen Bausteinen zusammengebastelt wird.
  • semikonservativ: Bei der DNS sind die beiden Einzelsträng komplementär. Das bedeutet, wenn ich den einen Einzelstrang kenne, kann ich den fehlenden einfach erzeugen. Das ermöglich eine semikonservative Replikation: Die doppelsträngige DNS wird in ihre zwei Einzelstränge getrennt, und es wird jeweils ein neuer ergänzt.
  • dispers: Das könnte man wohl am ehesten mit... "irgendwie" oder "durcheinander" übersetzen. Gemeint ist: Das Original wird zerstückelt und mit neuen Bausteinen zu zwei Abbildungen des Originals wieder zusammengesetzt. Dafür gibt es in unserer Lebensumwelt kein vernünftiges Beispiel.

Die folgenden Abbildungen zeigen einen grafischen Überblick über diese drei Varianten:
Repli Mechanismen denkbareVarianten.jpg
Repli Mechanismen denkbareVarianten einfach.jpg

Das Problem an dieser Darstellung: Auf den Bildern könnt ihr aufgrund von Farben sehr schön sehen, welcher Teil der DNS alt ist und welcher neu. In der Realität geht das nicht! Erstens gibt es überhaupt kein Mikroskop, mit dem man einen DNS-Strang überhaupt sehen könnte und selbst wenn, wüsste man nicht, was an einem DNS-Strang alt und was neu ist...
Wir haben schon oft über solche Phänomene gesprochen: Man braucht ein Experiment, mit dem man etwas sichtbar machen kann, was eigentlich nicht sichtbar ist. Und genau hier kommt das Experiment von Meselson und Stahl ins Spiel. Sie machten sich folgenden Effekt zu Nutze: Isoliert man DNS aus Bakterien, kann man sie in einem Reagenzglas auf eine Salz-Lösung auftragen und den Ansatz stark zentrifugieren. Je nachdem, wie "schwer" (das ist nicht ganz korrekt, aber ich bleibe mal bei diesem Begriff) die DNS ist, wird sie beim Zentrifugieren durch die Zentrifugalkraft im Reagenzglas weiter nach unten gedrückt (oder gezogen, wie ihr wollt).
Repli MeselsonStahl VDesign.jpg
Wenn man das Experiment mehrfach wiederholt, kommt logischerweise immer das gleiche Ergebnis heraus: Die isolierte DNS wandert immer die gleiche Strecke im Reagenzglas nach unten. Meselson und Stahl haben nun aber einen Weg gefunden, die DNS in den Bakterien zu manipulieren. Sie konnten sie schwerer machen als normal: Sie ließen die Bakterien auf einem Medium wachsen und sich vermehren, welches schwere Stickstoff-Atome enthielt (man symbolisiert schweren Stickstoff mit 15N). Auch die DNS enthält Stickstoff-Atome. Normalerweise leichten Stickstoff (14N), weil nur der in der Natur in großen Mengen vorkommt. Nachdem den Bakterien im Versuch aber nur schwerer Sticktstoff 15N zur Verfügung stand, mussten sie diesen zum Aufbau ihrer DNS heranziehen. Lässt man die Bakterien lange genug in diesem 15N-Medium wachsen, enthalten sie nach einiger Zeit nur noch "schwere DNS". Zentrifugiert man nun die DNS von diesen Bakterien, stellt man tatsächlich fest, dass diese DNS etwas weiter nach unten gedrückt/gezogen wird als die leichte DNS der ursprünglichen Bakterien.
Repli MeselsonStahl U N14 N15.jpg

Was bringt das jetzt?

Noch gar nichts! Man kann erstmal nur unterscheiden, ob die DNS schwer oder leicht ist. Aber der Versuch war noch nicht zu Ende. Meselson und Stahl überführten nun Bakterien, die ihr Leben lang auf Medium mit schwerem Stickstoff 15N gewachsen waren, auf ein neues Medium, das nur leichten Stickstoff 14N enthielt. Dort durften die Bakterien genau so lange bleiben, bis sie sich einmal geteilt hatten, das Erbgut also genau einmal verdoppelt worden war.
Anschließend wurde die DNS wieder isoliert und zentrifugiert.

Welches Ergebnis sollte man erhalten, bei:

  • einer konservativen,
  • einer semikonservativen und
  • einer dispersen

Replikation?


  • konservativ: Es sollte eine Bande mit schwerer und eine Bande mit leichter DNS auftauchen. Nachdem beim konservativen Mechanismus die alte (schwere) DNS erhalten bleiben würde und eine neue (leichte) DNS erzeugt werden würde, müsste man diese beiden Banden finden.
  • semikonservativ: Es sollte nur eine Bande auftauchen; und zwar zwischen der Stelle, an der normalerweise die schwere DNS auftauchen würde und der der Stelle, an der normalerweise die leichte DNS auftauchen würde. Beim semikonservativen Mechanismus wird die alte (schwere) DNS in der Mitte geteilt und jeweils eine Hälfte durch neue Bausteine ergänzt. Das bedeutet, alle DNS-Stränge sind gleich (halb schwer, halb leicht, also: mittelschwer).
  • dispers: Nachdem hier alle möglichen Varianten denkbar sind, sollten viele verschiedene DNS-Varianten auftauchen. Es sollte also keine klare Bande entstehen, sondern eher ein verschwommener Fleck

Das tatsächliche Ergebnis seht ihr hier:
Repli MeselsonStahl VErgebnis.jpg
Welcher Replikationsmechanismus liegt also vor?


Der semikonservative


Wie funktioniert´s?
Schaut das Video, welches zeigt, wie die Replikation auf molekularer Ebene abläuft! Beantwortet während des Videos bzw. danach folgende Fragen:

  • Was macht die Helicase?
  • Wie heißt das Enzym, das aus RNA-Stückchen einen kleinen Primer formt?
  • Warum kann der "leading-strand" (Vorwärts-Strang) in einem Stück ergänzt werden, der "lagging-strand" (Rückwärts-Strang) nicht?
  • Was ist ein Okazaki-Fragment?
  • Was macht die Ligase?


  • Sie entdrillt die DNS-Doppelhelix und trennt die beiden Einzelstränge voneinander.
  • Primase
  • Weil die Polymerase nur in eine Richtung arbeiten kann (am neu entstehenden Strang die Nukleotide von 5´ nach 3´ verknüpfen), auf dem Vorwärtsstrang kann die Polymerase daher der Helicase "hinterher" laufen, auf dem Rückwärtsstrang muss gewartet werden, bis ein neuer Primer erstellt wurde, erst dann kann die Polymerase "von der der Helicase weg" arbeiten.
  • Die noch nicht miteinander verknüpften doppelsträngigen Abschnitte auf dem Rückwärtsstrang
  • Sie schließt die Lücke im Zucker-Phosphat-Gerüst der neu synthetisierten Einzelstränge.


Hausaufgabe
Lesen: Buch, S. 63 - 65 (ohne den blauen Zettelkasten)
Aufgabe: Beschreibe das sichtbare Ergebnis, wenn man die Bakterien im Versuch von Meselson und Stahl nicht einen Teilungszyklus lang, sondern zwei Teilungszyklen lang auf Medium mit leichtem Stickstoff wachsen lässt!