Leere Seite: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
(30 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
== Arbeitsauftrag vom 20.03. ==
+
<span style="color:#F00">'''Seite noch im Aufbau!'''</span>
'''Zu bearbeiten bis: , HA, Lösung, Arbeitszeit: optional: Ihr benötigt zur Bearbeitung: Das Schulbuch, einen Zettel und einen Stift'''
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
<span style="color:#007">'''Wiederholung: Stammbaumanalysen'''</span><br>
+
Wie in der letzten Unterrichts-Stunde angedeutet hat das Analysieren von Stammbäumen eine ganz praktische Bedeutung: Man kann damit z.B. die Wahrscheinlichkeit ableiten, mit der ein Kind geboren wird, das Träger einer Erbkrankheit ist. <br>
+
* Lest zunächst auf S. 109 in der linken Spalte die Absätze 1, 2 und 4
+
* Zeichnet unter Angabe aller möglichen Genotypen einen Stammbaum für eine Familie, in der ein autosomal-dominant vererbtes Merkmal (z.B. das Marfan-Syndrom) vorkommen soll: Ein gesunder '''Mann''' heiratet eine '''Frau''', die das Marfan-Syndrom zeigt. Die beiden Geschwister der Frau (ein Bruder, eine Schwester) sind phänotypisch unauffällig, ebenso wie die Mutter. Der Vater litt allerdings auch am Marfan-Syndrom.
+
* Berechnen Sie die Wahrscheinlichkeit dafür, dass ein Kind des '''eingangs genannten Paares''' das Marfan-Syndrom aufweisen wird.
+
</div>
+
 
+
<br>
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
{{versteckt|
+
[[Datei:Stammbaum_Marfan_ML.jpg|600px]]
+
}}
+
</div>
+
<br>
+
 
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
+
<span style="color:#060">'''Optional (= freiwillig)'''</span><br>
+
* Es gibt einen berühmten Fall von einer Frau, die das Marfan-Syndrom zeigt. Wer will, kann '''Lizzie Velásquez''' recherchieren.
+
</div>
+
<br>
+
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
Die '''Aufgabe 1''' auf der S. 110 beschäftigt sich mit einer Familie, in der die Bluterkrankheit vorkommt. Diese wird gonosomal-rezessiv vererbt. Löst die Aufgabe mit folgender Änderung: ''... Ermitteln Sie über einen Stammbaum der Familie das Risiko, mit dem '''ein Kind''' dieser Frau ebenfalls bluterkrank sein wird.''
+
<span style="color:#006">'''Aufgabe'''</span><br>
* Zeichnet zunächst den Stammbaum unter Angabe aller möglichen Genotypen!
+
Zunächst eine Aufgabe, die mit dem letzten Thema "Mutationen" zusammenhängt: <br>
</div>
+
* Ein Mutationstyp wurde im Unterricht nicht besprochen: Die so genannte '''Rastermutation'''.  
 +
* Bei einer Rastermutation wir eine Base (bzw. mehrere) zusätzlich in die DNA eingefügt (= '''Insertion''') oder eine Base (bzw. mehrere) entfernt (= '''Deletion''').
 +
* Dadurch wird ab diesem Punkt das gesamte '''Leseraster''' der DNA verschoben. Es kommt zur Bildung völlig anderer AS-Ketten, die so gut wie nie die Funktion des ursprünglichen Proteins erfüllen können.
 +
* s. auch Buch: S. 76 letzter Absatz - S. 77 erster Absatz
 +
* ein Beispiel für einen chemischen Stoff, der in der Lage ist, eine Rastermutation zu verursachen, wäre z.B. [https://de.wikipedia.org/wiki/Ethidiumbromid Ethidiumbromid]
 
<br>
 
<br>
 
+
Eine Beispielaufgabe:
<div style="border: 1px solid #FF0000; padding:7px;">
+
* Betrachte den folgenden DNA-Strang. Zunächst nur den mit schwarz dargestellten Normalfall: <br>
 +
[[Datei:GenMut_Raster_AA.jpg|800px]]
 +
* Leite den entsprechenden mRNA-Strang ab und übersetze diesen in eine AS-Kette (Code-Sonne auf S. 68 im Buch)
 
{{versteckt|
 
{{versteckt|
[[Datei:Stammbaum_Bluter_ML1.jpg|600px]]
+
[[Datei:GenMut_Raster_ML_T1.jpg|800px]] <br>
 +
Typische Fehler:
 +
* falschen Strang abgelesen
 +
* Translation nicht bei AUG begonnen
 
}}
 
}}
</div>
 
 
<br>
 
<br>
 
+
* Füge nun - wie in rot dargestellt - an der gekennzeichneten Position das Nukleotid mit der Base Adenin ein und führe erneute eine Transkription und Translation durch!
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
* Berechnet jetzt die Wahrscheinlichkeit für ein Kind, das an der Bluterkrankheit leidet
+
</div>
+
<br>
+
 
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
 
{{versteckt|
 
{{versteckt|
[[Datei:Stammbaum_Bluter_ML2.jpg|600px]]
+
[[Datei:GenMut_Raster_ML_T2.jpg|800px]] <br>
 
}}
 
}}
</div>
+
* Beschreibe (am besten schriftlich, damit Du das Formulieren übst) welche Konsequenzen diese Mutation für das Lebewesen hat!
<br>
+
 
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
<span style="color:#007">'''Heterozygoten-Tests'''</span><br>
+
Das letzte Beispiel zeigt auch, dass es bei rezessiv vererbten Merkmalen einen entscheidenden Unterschied macht, ob eine phänotypisch gesunde Person '''heterozygot''' ist, also den Genotyp '''Aa''' bzw. '''X<sub>A</sub>X<sub>a</sub>''' besitzt oder '''homozygot''' ist, also den Genotyp '''AA''' bzw. '''X<sub>A</sub>X<sub>A</sub>''' besitzt. Lange Zeit gab es keine Möglichkeit (außer in bestimmten Fällen über Stammbaum-Betrachtungen) zu testen, ob eine Person heterozygot ist. Inzwischen gibt es für einige Krankheiten gentechnische Nachweis-Methoden. <br>
+
Ein schon etwas älterer "Heterozygoten-Test" nutzt eher die Prozesse im Stoffwechsel von Menschen aus.
+
* Lest auf S. 108 den Text über Phenylketonurie (PKU) (1. Absatz link + 2. und 3. Absatz rechts) und auf der S. 109 den Abs. 5 (rechte Spalte)
+
* Betrachtet anschließend das folgende Bild und beschreibt es mit eurem soeben erworbenen Fachwissen. Sprecht dabei laut! Am besten ihr holt euch jemanden dazu, der gerade Zeit hat, z.B. eure Eltern, die sich bestimmt wahnsinnig freuen werden! Wenn ihr das nicht möchtet, dann erzählt es wenigstens einem Gegenstand auf eurem Schreibtisch, laut!
+
[[Datei:PKU_VglGesundKrank_Schema.jpg|600px]]
+
</div>
+
<br>
+
 
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
 
{{versteckt|
 
{{versteckt|
[[Datei:PKU_VglGesundKrank_Schema_ML.jpg|600px]]
+
Das entstehende Protein besteht aus völlig anderen Aminosäuren. Die 3dimensionale Raumstruktur wird sich völlig ändern. Da ein wichtiger Zusammenhang zwischen dieser Struktur und der Funktion einen Proteins besteht, ist das Produkt dieser Proteinbiosynthese höchstwahrscheinlich komplett funktionslos. Handelt es sich z.B. um ein Enzym, sind schwerwiegende Stoffwechselstörungen im Organismus zu erwarten.
Z.B.: Menschen besitzen von jedem Chromosom ein homologes Paar. Auf diesen Chromosomen gibt es Orte, die z.B. für die sichtbare Ausprägung eines Merkmals mitverantwortlich sind. Diese Orte nennt man auch Gene (1a/1b). Die Gene bestehen aus DNA, die aber nicht immer gleich ist. Häufig gibt es verschiedene Varianten von DNA-Abschnitten, die in einem Gen sitzen (2a/2b). Diese Varianten heißen Allele. Im Normalfall sorgt ein Allel auf dem Chromosom Nr. 15 (das konnten ihr nicht wissen) für die Bildung des Enzyms Phenylalaninhydroxylase (3a), welches in der Lage ist, mit der Nahrung aufgenommenes Phenylalanin in Tyrosin umzuwandeln (4a). Dieses wird von anderen Enzymen, die hier nicht relevant sind, in CO<sub>2</sub> und H<sub>2</sub>O zerlegt (5a, 6a). <br>
+
Bei Menschen mit Phenylketonurie befindet sich auf dem entsprechenden Gen ein Allel, welches nicht zur Bildung des korrekten Enzyms führt (2b/3b). Mit der Nahrung aufgenommenes Phenylalanin kann nicht weiterverarbeitet werden (4b) und reichert sich im Körper an (5b). In einer Nebenreaktion entsteht Phenylketon (6b) was sich äußerst toxisch auf die Entwicklung von Nervenzellen auswirkt. <br>
+
Wird die Krankheit nicht erkannt, entwickeln Kinder mit PKU schwerste Behinderungen. Diese Fehlentwicklung lässt sich einfach vermeiden, indem man eine strenge Diät einhält, bei der kein Phenylalanin in der Nahrung vorkommt.
+
 
}}
 
}}
 
</div>
 
</div>
Zeile 69: Zeile 33:
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
<span style="color:#060">'''Optional (= freiwillig)'''</span><br>
+
<span style="color:#060">'''Neu: Gentechnische Werkzeuge und Verfahren - Überblick'''</span><br>
* Recherchiert Lebensmittel, die viel bzw. kaum Phenylalanin enthalten!
+
'''Ziel''': Der Mensch ist inzwischen in der Lage, das Erbgut von Lebewesen gezielt zu verändern. Damit kann man z.B.
</div>
+
* die Eigenschaften von Pflanzen verändern,
 +
* Bakterien und Hefen dazu veranlassen, Stoffe in großen Mengen herzustellen, die der Mensch dann isolieren und weiterverwenden kann,
 +
* genetische "Defekte" zu "reparieren".
 
<br>
 
<br>
 
+
Es gibt einen inzwischen etwas in die Jahre gekommenen "Selbstlernkurs", den ich die Schülerinnen und Schüler meiner Bio-Oberstufenkurse als Einleitung zur Thematik im Computerraum immer alleine bearbeiten habe lassen. Das klappte eigentlich immer ganz gut. Der Kurs wurde von einem Herrn Mallig in Freiburg entwickelt.
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
* Für diesen Selbstlernkurs solltet ihr euch ca. 30-45 Minuten Zeit nehmen.
* Im Buchtext wurde bereits der Genotyp '''Aa''' angesprochen. Zeichnet diesen Fall nach dem gleichen Schema wie auf der Folie oben!
+
* Evtl. ist es für den/die eine/n oder andere/n für euch besser '''vor dem Selbstlernkurs''' die '''Seiten im Buch''' zu lesen und einen '''kurzen Film''' zu schauen. Springt dazu zunächst zum nächsten Kasten "Weiteres Material".
 +
* Der folgende Link führt euch zur Startseite [http://www.mallig.eduvinet.de/bio/gentecnk/gentek10.htm Selbstlernkurs-Start]
 +
: Dort wird noch mal erklärt, was ein Selbstlernkurs ist und man steigt in die Thematik "Gentechnik" ein.
 +
: Ihr kommt immer zur nächsten Seite mit einem recht unscheinbaren '''Link unten rechts''' auf jeder Seite "zur nächsten Seite".
 +
: Zurück kommt ihr am besten mit den "Back"-Buttons eures Browsers
 +
* Solltet ihr euch im Netz des Selbstlernkurses verlieren, könnt ihr auch immer wieder auf der folgenden Seite einsteigen: [http://www.mallig.eduvinet.de/bio/gentecnk/gentek12.htm Selbstlernkurs-Übersicht]
 +
: Denn hier sind genau die Begriffe aufgeführt, die ihr beherrschen sollt!
 +
: Ihr sollt erklären können:
 +
:: Was "können" '''Restriktionsenzyme'''?
 +
:: Was "können" '''Ligasen'''?
 +
:: Was sind '''Vektoren'''?
 +
:: Was bedeutet '''Klonierung'''?
 +
:: Wie funktioniert die '''PCR (Polymerase-Chain-Reaction)'''?
 +
:: Was ist '''cDNA'''?
 
</div>
 
</div>
 
<br>
 
<br>
  
<div style="border: 1px solid #FF0000; padding:7px;">
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
{{versteckt|
+
<span style="color:#060">'''Weiteres Material'''</span><br>
[[Datei:PKU_Heterozygot_Schema_ML.jpg|600px]]
+
'''Film''' auf BRalpha, ca. 15min.: Gesamtüberblick "Was kann Gen-Technik"
}}
+
{{#ev:youtube |jc_iY5fnGLg}}<br>
</div>
+
<br>
+
  
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
* Buch, S. 112-113 (Restriktionsenzyme, Ligasen, Marker)
Der Heterozygoten-Test auf Phenylketonurie wird bei nahezu allen Neugeborenen durchgeführt und kann nach folgendem Muster erfolgen (heutzutage macht man das allerdings anders): Man spritzt einer Person Phenylalanin und misst im Anschluss regelmäßig den Tyrosin-Gehalt im Blut.
+
* Buch, S. 114-115 (Vektoren)
* Zeichne ein Diagramm, das die Tyrosin-Konzentration im Blut nach der Gabe von Phenylalanin in Abhängigkeit von der Zeit zeigt. Einmal für den Fall, dass die betroffene Person den Genotyp AA besitzt und mit einer zweiten Kurve den Genotyp aa.
+
* Buch, S. 118-119 (PCR)
</div>
+
<br>
+
  
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
[[Datei:PKU_HeterozygotentestAAaa_ML.jpg|600px]]
 
Bei Personen mit dem Genotyp AA werden zwei funktionstüchtige Enzyme gebildet, die Phenylalanin zu Tyrosin umwandeln. Das bedeutet, dass nach der Gabe von Phenylalanin der Tyrosin-Gehalt stark ansteigen muss. Tyrosin wird jedoch weiterverarbeitet, insofern fällt nach einiger Zeit der Tyrosin-Spiegel wieder. <br>
 
Bei Personen mit dem Genotyp aa werden zwei funktionslose Enzyme gebildet. Phenylalanin wird nicht weiterverarbeitet, es taucht kein zusätzliches Tyrosin im Blut auf.
 
}}
 
 
</div>
 
</div>
<br>
 
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
* Zeichne in das Diagramm nun den Verlauf ein, der sich ergeben sollte, wenn die betrachtete Person heterozygot (Genotyp '''Aa''') ist.
 
</div>
 
<br>
 
 
<div style="border: 1px solid #FF0000; padding:7px;">
 
{{versteckt|
 
[[Datei:PKU_HeterozygotentestAa_ML.jpg|600px]]
 
Bei Personen mit dem Genotyp AA werden zwei funktionstüchtige Enzyme gebildet, die Phenylalanin zu Tyrosin umwandeln. Das bedeutet, dass nach der Gabe von Phenylalanin der Tyrosin-Gehalt stark ansteigen muss. Tyrosin wird jedoch weiterverarbeitet, insofern fällt nach einiger Zeit der Tyrosin-Spiegel wieder. <br>
 
Bei Personen mit dem Genotyp aa werden zwei funktionslose Enzyme gebildet. Phenylalanin wird nicht weiterverarbeitet, es taucht kein zusätzliches Tyrosin im Blut auf.
 
}}
 
</div>
 
<br>
 
 
=== Veranstaltungen im April 2017 ===
 
{{versteckt|
 
 
}}
 

Aktuelle Version vom 19. Juni 2020, 20:37 Uhr

Seite noch im Aufbau!

Aufgabe
Zunächst eine Aufgabe, die mit dem letzten Thema "Mutationen" zusammenhängt:

  • Ein Mutationstyp wurde im Unterricht nicht besprochen: Die so genannte Rastermutation.
  • Bei einer Rastermutation wir eine Base (bzw. mehrere) zusätzlich in die DNA eingefügt (= Insertion) oder eine Base (bzw. mehrere) entfernt (= Deletion).
  • Dadurch wird ab diesem Punkt das gesamte Leseraster der DNA verschoben. Es kommt zur Bildung völlig anderer AS-Ketten, die so gut wie nie die Funktion des ursprünglichen Proteins erfüllen können.
  • s. auch Buch: S. 76 letzter Absatz - S. 77 erster Absatz
  • ein Beispiel für einen chemischen Stoff, der in der Lage ist, eine Rastermutation zu verursachen, wäre z.B. Ethidiumbromid


Eine Beispielaufgabe:

  • Betrachte den folgenden DNA-Strang. Zunächst nur den mit schwarz dargestellten Normalfall:

GenMut Raster AA.jpg

  • Leite den entsprechenden mRNA-Strang ab und übersetze diesen in eine AS-Kette (Code-Sonne auf S. 68 im Buch)

GenMut Raster ML T1.jpg
Typische Fehler:

  • falschen Strang abgelesen
  • Translation nicht bei AUG begonnen


  • Füge nun - wie in rot dargestellt - an der gekennzeichneten Position das Nukleotid mit der Base Adenin ein und führe erneute eine Transkription und Translation durch!

GenMut Raster ML T2.jpg

  • Beschreibe (am besten schriftlich, damit Du das Formulieren übst) welche Konsequenzen diese Mutation für das Lebewesen hat!

Das entstehende Protein besteht aus völlig anderen Aminosäuren. Die 3dimensionale Raumstruktur wird sich völlig ändern. Da ein wichtiger Zusammenhang zwischen dieser Struktur und der Funktion einen Proteins besteht, ist das Produkt dieser Proteinbiosynthese höchstwahrscheinlich komplett funktionslos. Handelt es sich z.B. um ein Enzym, sind schwerwiegende Stoffwechselstörungen im Organismus zu erwarten.


Neu: Gentechnische Werkzeuge und Verfahren - Überblick
Ziel: Der Mensch ist inzwischen in der Lage, das Erbgut von Lebewesen gezielt zu verändern. Damit kann man z.B.

  • die Eigenschaften von Pflanzen verändern,
  • Bakterien und Hefen dazu veranlassen, Stoffe in großen Mengen herzustellen, die der Mensch dann isolieren und weiterverwenden kann,
  • genetische "Defekte" zu "reparieren".


Es gibt einen inzwischen etwas in die Jahre gekommenen "Selbstlernkurs", den ich die Schülerinnen und Schüler meiner Bio-Oberstufenkurse als Einleitung zur Thematik im Computerraum immer alleine bearbeiten habe lassen. Das klappte eigentlich immer ganz gut. Der Kurs wurde von einem Herrn Mallig in Freiburg entwickelt.

  • Für diesen Selbstlernkurs solltet ihr euch ca. 30-45 Minuten Zeit nehmen.
  • Evtl. ist es für den/die eine/n oder andere/n für euch besser vor dem Selbstlernkurs die Seiten im Buch zu lesen und einen kurzen Film zu schauen. Springt dazu zunächst zum nächsten Kasten "Weiteres Material".
  • Der folgende Link führt euch zur Startseite Selbstlernkurs-Start
Dort wird noch mal erklärt, was ein Selbstlernkurs ist und man steigt in die Thematik "Gentechnik" ein.
Ihr kommt immer zur nächsten Seite mit einem recht unscheinbaren Link unten rechts auf jeder Seite "zur nächsten Seite".
Zurück kommt ihr am besten mit den "Back"-Buttons eures Browsers
  • Solltet ihr euch im Netz des Selbstlernkurses verlieren, könnt ihr auch immer wieder auf der folgenden Seite einsteigen: Selbstlernkurs-Übersicht
Denn hier sind genau die Begriffe aufgeführt, die ihr beherrschen sollt!
Ihr sollt erklären können:
Was "können" Restriktionsenzyme?
Was "können" Ligasen?
Was sind Vektoren?
Was bedeutet Klonierung?
Wie funktioniert die PCR (Polymerase-Chain-Reaction)?
Was ist cDNA?


Weiteres Material
Film auf BRalpha, ca. 15min.: Gesamtüberblick "Was kann Gen-Technik"


  • Buch, S. 112-113 (Restriktionsenzyme, Ligasen, Marker)
  • Buch, S. 114-115 (Vektoren)
  • Buch, S. 118-119 (PCR)