Abi 2015 Analysis II Teil B
|
Gegeben ist die Funktion f mit und Dafinitionsbereich Df = IR \ {-3;-1}. Der Graph von f wird mit Gf bezeichnet. a) Zeigen Sie, dass f(x) zu jedem der drei folgenden Terme äquivalent ist:
Abbildung 1 zeigt den Graph der in IR definerten Funktion p:x > 0,5*(x+2)2 -0,5, die die Nullstelle x=-3 und x=-1 hat. Für x ∈ Df gilt . GRAPHIK EINFÜGEN
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f'(x) und p'(x), dass x=-2 einzige Nullstelle von f' ist und dass Gf in ]-3;-2[ streng monoton steigend sowie in ]-2;-1[ streng monoton fallend ist. Geben Sie Lage und Art des Extrempunktes von Gf an.
|
Gegeben ist die Funktion mit Definitionsbereich Dh = ]-1;+∞[. Abbildung 2 zeigt den Graph Gh von h.
|
|
An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt t (in Stunden nach Beginn der Messung) durch die Gleichung 2 n t 3t 60t 500 beschrieben werden. a) Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung. b) Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft 1 h 30 beträgt. |