Abi 2015 Analysis I Teil B

Aus RMG-Wiki
Wechseln zu: Navigation, Suche



Mathematik (Bayern): Abiturprüfung 2015
Analysis I - Teil B


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1

Gegeben ist die Funktion f mit f(x)=\frac{1}{x+1}-\frac{1}{x+3} und Definitionsbereich Df = IR\{-3; -1}. Der Graph vonf wird mit Gf bezeichnet. a) Zeigen Sie, dass f(x) zu jedem der drei folgenden Terme äquivalent ist:

\frac{2}{(x+1)(x+3)} ; \frac{2}{x^2+4x+3} ; \frac{1}{0,5\cdot (x+2)^2-0,5}

ABI2017 AI TeilB 1a Lös.jpg

b) Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist, und geben Sie die Gleichungen der vertikalen Asymptoten von Gf an. Be- stimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse. Abbildung 1 zeigt den Graphen der in IR definierten Funktion p : x \mapsto 0,5\cdot(x+2)^2-0,5, die die Nullstellen x = -3 und x = -1 hat.

Für x ∈ Df gilt f(x)=\frac{1}{p(x)}.

ABI2017 AI TeilB 1b Lös.jpg

c) Gemäß der Quotientenregel gilt für die Ableitungen f' und p' die Beziehung: f'(x)=-\frac{p'(x)}{(p(x))^2} für x ∈ Df.

Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f'(x) und p'(x), dass x = -2 einzige Nullstelle von f' ist und dass Gf in ]-3; -2[ streng monoton steigend sowie in ]-2;-1[ streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von Gf an.

ABI2017 AI TeilB 1c Lös.jpgG

d) Berechnen Sie f(-5) und f(-1,5) und skizzieren sie Gf unter Berücksichtigung der Ergebnisse in Abbildung 1.

ABI2017 AI TeilB 1d Lös.jpgG



Aufgabe 2

a)

b)

c)




Aufgabe 3

a)

b)

c)