Abi 2012 Analysis I Teil A

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Mathematik (Bayern): Abiturprüfung 2012
Analysis I - Teil A


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1

Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an.
a)  f(x) = ln(x+3)
b)  g(x) =  \frac{2}{x^{2}-1}



Aufgabe 2

Geben Sie jeweils den Term einer in IR definierten Funktion an, die die angegebene Eigenschaft besitzt.
a) Der Graph der Funktion f hat den Hochpunkt (0|5) .
b) Die Funktion g ist an der Stelle x = 5 nicht differenzierbar.


Aufgabe 3

Gegeben ist die in IR definierte Funktion  f:x \mapsto sin(2x).
a) Geben Sie zwei benachbarte Nullstellen von f an.
b) Berechnen Sie den Wert des bestimmten Integrals  \int_{0}^{2} f (x)\,dx .

Warum stimmt der Wert diese Integrals ich mit dem Inhalt der Fläche überein, die für 0 ≤ x ≤ 2 zwischen dem Graphen von f und der x-Achse liegt?


Aufgabe 4