2003 V

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Leistungskurs Mathematik (Bayern): Abiturprüfung 2003
Analytische Geometrie V


Download der Originalaufgaben: Abitur 2003 LK Mathematik Bayern - Lösung gesamt


Erarbeitet von Nellie Kirchner, Lea Mainberger, Maximilian Benkert



In einem kartesischen Koordinatensystem des \mathbb{R} 3 ist die Ebene H: x1 + x2 + x3 - 8 = 0 , sowie die Schar von Geraden ga : \vec x = \begin{pmatrix} a^2 \\ 0 \\ -a^2 \end{pmatrix} + \lambda \cdot\begin{pmatrix} 3a \\ -3a \\ 8 \end{pmatrix}, \lambda\mathbb{R} , a ∈ \mathbb{R} gegeben.



Aufgabe 1

a) Zeigen Sie, dass keine der Geraden ga parallel und keine senkrecht zur Ebene H verläuft.

3 BE


Mainberger Lea 2003 V 1a.jpg


b) Welche dieser Geraden schneidet H unter dem größten Winkel? Berechnen Sie diesen maximalen Winkel auf eine Dezimale genau.

6 BE


Mainberger Lea 2003 V 1b 001.jpg


c) Berechnen Sie die Koordinaten des Schnittpunkts Sa von ga mit H.

[ Zur Kontrolle: Sa = (a2 + 3a / -3a / 8 - a2) ]

3 BE


Mainberger Lea 2003 V 1c.jpg


d) Zeigen Sie, dass der Punkt S (-2 / 6 / 4) derjenige Punkt aus der Schar der Schnittpunkte Sa ist, der die geringste Entfernung vom Ursprung hat. Geben Sie diese Entfernung an.

9 BE


Mainberger Lea 2003 V 1d 1.jpg


e) Die Punkte Sa bilden in H eine Kurve. Diese wird parallel zur x3-Achse in die x1x2-Ebene projiziert; die Projektion heißt P. Fertigen Sie eine Zeichnung von P in der x1x3-Ebene an. Um welchen Kurventyp handelt es sich bei P vermutlich? Überprüfen Sie Ihre Vermutung, indem Sie eine Koordinatengleichung von P aufstellen.

8 BE




Aufgabe 2

Ferner sind die Punkte A ( 1 / 6 / 1) und B (-2 / 9 / 1) gegeben.


a) Weisen Sie nach, dass sich die Punkte A und B zu einem regulären Sechseck ABCDEF mit dem Mittelpunkt S (-2 / 6 / 4) ergänzen lassen. Ermitteln Sie die Koordinaten der Ergänzungspunkte C und D.


5 BE



b) Das Sechseck ABCDEF rotiert nun um die Achse AD.Beschreiben Sie das Aussehen des dabei entstehenden Rotationskörpers. Ermitteln Sie eine Gleichung der kleinsten Kugel, die den Rotationskörper enthält. Liegt der Ursprung des Koordinatensystems innerhalb oder außerhalb dieses Rotationskörpers? Begründen Sie Ihre Antwort.


6 BE