2008 II

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Erstellt von Alistair Mainka und Benjamin Schleicher.

Aufgabe 1

Gegeben ist die Funktion f(x)=e^{1-0,5x^2} mit Definitionsbereich Df = IR . Die Abbildung auf der folgenden Seite zeigt den Graphen Gf von f.


a) Untersuchen Sie Gf rechnerisch auf Symmetrie und Schnittpunkte mit den Achsen. Bestimmen Sie das Verhalten von f für x → + ∞ und x → − ∞. (4BE)

ABI 2008 II A1a Lös1.jpg

b) Zeigen Sie, dass gilt: f''(x)=(x^2-1)e^{1-0,5x^2}. Bestimmen Sie durch Rechnung das Monotonieverhalten von f und die Koordinaten der Wendepunkte. (6BE)

ABI 2008 II A1b Lös1.jpg


Aufgabe 2

Die Integralfunktion F ist definiert durch F(x)=\int_{0}^{x} f (t)\,dt, x ∈ IR.


a) Untersuchen Sie das Symmetrie-, Monotonie- und Krümmungsverhalten des Graphen von F. Bestimmen Sie aus der Abbildung mit Hilfe des Gitternetzes Näherungswerte für F(0,5), F(1), F(2) und F(4). Tragen Sie den Graphen von F im Bereich x ∈[−4;4] in die gegebene Abbildung ein. (8BE)

ABI 2008 II A2a Lös1.jpg


b) Für x > 1 gilt offensichtlich xe^{1-0,5x^2} > e^{1-0,5x^2}. Zeigen Sie damit, dass \int_{4}^{\infty } f (x)\,dx < 10^{-3} ist. Was folgt für die Funktionswerte von F für x ≥ 4? (5BE)

ABI 2008 II A2b Lös1.jpg

3. Die Funktion f soll im Folgenden in einer Umgebung von x = 0 durch eine Polynomfunktion p mit dem Term p(x) = ax4 + bx2 + c , a, b, c ∈ IR , angenähert werden.

a) Bestimmen Sie die Koeffizienten a, b und c so, dass f und p an der Stelle x = 0 im Funktionswert und in den Werten der 1. bis einschließlich 4. Ableitung übereinstimmen. Ohne Nachweis darf verwendet werden: f '''(0) = 0, f ''''(0) = 3e (6BE)

[Zur Kontrolle: p(x) = e(\frac{1}{8}x - \frac{1}{2} x2 + 1)]

ABI 2008 II A3a Lös1.jpg


b) Zeigen Sie, dass p keine Nullstelle besitzt. Berechnen Sie den Inhalt A der Fläche, die von den Koordinatenachsen, dem Graphen von p und der Geraden x = 1 eingeschlossen wird, auf 4 Dezimalen gerundet. (5BE)

[Zur Kontrolle: A ≈ 2,3332]

ABI 2008 II A3b Lös1.jpg

c) Bestimmen Sie nun den Wert des Integrals \int_{0}^{1} f (x)\,dx mit Hilfe der Gauß’schen ϕ-Funktion (\varphi(x) \frac{1}{\sqrt{2\pi } } e<^{-0,5x^2}) und dem stochastischen Tafelwerk. Um wie viel Prozent weicht der Näherungswert aus Teilaufgabe 3b von diesem Ergebnis ab? (6BE)

ABI 2008 II A3c Lös1.jpg