2009 VI

Aus RMG-Wiki
< LK Mathematik‎ | Abitur
Version vom 1. Februar 2010, 10:20 Uhr von Köhler Lisa (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

VI. Gegeben sind in einem kartesischen Koordinatensystem des die Ebene F, die parallel zur -Achse ist und die Punkte und enthält, sowie die Ebenenschar mit . a) Berechnen Sie eine Gleichung der Ebene F in Normalenform. [Zur Kontrolle: ] b) Die Kugel K mit dem Mittelpunkt berührt die Ebene F. Berechnen Sie die Koordinaten des Berührpunkts und den Radius r der Kugel. [Teilergebnis: ] c) Die Punktspiegelung der Kugel K am Punkt A ergibt die Kugel . Bestimmen Sie die Koordinaten des Mittelpunkts der Kugel und geben Sie deren Radius an. [Teilergebnis: ] d) Zeigen Sie, dass die Ebenen und symmetrisch bezüglich des Punktes A liegen, und berechnen Sie den Abstand dieser beiden Ebenen. e) Die Ebene schneidet die Kugel K in einem Kreis. Berechnen Sie den Mittelpunkt N und den Radius r dieses Kreises. Warum hat der Schnittkreis von mit der Kugel ebenfalls den Radius  ? [Teilergebnis: ] f) Die Kreise aus Teilaufgabe e bilden die Grund- und die Deckfläche eines schiefen Zylinders. Berechnen Sie das Volumen dieses schiefen Zylinders und den Winkel , um den die Zylinderachse gegen die Grundfläche ge-neigt ist. g) In welcher Ebene der Schar liegt der Punkt  ? Für welche Werte des Scharparameters a schneiden sich die Kugel und die Ebene in einem Kreis?