Übungsaufgaben
Aus RMG-Wiki
< Facharbeit Florian Wilk
Version vom 17. Januar 2010, 18:59 Uhr von Wilk Florian (Diskussion | Beiträge)
Übungsaufgaben
Aufgabe 1:
Beschreibe, wie die unten abgebildeten Funktionen aus den vorangegangen Funktionen entstanden sind.
Ausgangsfunktion
Beispiel:
Verschiebung um 1 Einheit in positiver y-Richtung
Diese Funktion dient nun als Ausgangsfunktion für die nächste Funktion
a)
Aufgabe 2:
Gegeben ist die Funktion f(x)=4x6+8x5-12x4-24x3
- a) Bestimme die Definitionsmenge
- b) Berechne die Nullstellen
- c) Bestimme das Verhalten der Funktion an den Rändern des Definitionsbereichs
Aufgabe 3:
Ordne den abgebildeten Funkionen die entsprechenden Begriffe zu. (oben: Funktionstyp , unten: Symmetrie)
Aufgabe 4:
Klicke auf die Ziffern, um das Kreuzworträtsel zu lösen.
Achsensymmetrie | Welche Symmetrie liegt vor? f(-x)=f(x) |
Grenzwert | Der Wert, dem sich ein Graph für größer werdende x-Werte annähert |
divergent | Eine Funktion, die keine Grenzwerte besitzt, heißt... |
punkt | Eine ungerade Funktion ist ...-symmetrisch |
konvergent | Eine Funktion, die für x→unendlich einen Grenzwert besitzt, ist ... |
y-Achse | An welcher Achse wird der Graph gespiegelt? g(x)=f(-x) |
Lösungsformel | Formel zur Nullstellenbestimmung bei Quadratischen Gleichungen |
Sinus | Trigonometrische Funktion |
Nullstelle | Schnittpunkt des Graphen mit der x-Achse |
x-Achse | An welcher Achse wird der Graph gespiegelt? g(x)=-f(x) |
So, du hast es geschafft!
Du hast den ganzen Lernpfad durchgearbeitet!
Jetzt solltest du dich mit den Eigenschaften von Funktionen und ihrer Graphen auskennen.