Lösung zur Teilaufgabe b)

Aus RMG-Wiki
Version vom 3. Januar 2010, 16:57 Uhr von Andre Etzel (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

1. Eigenschaften einer Stammfunktion von fa

1.) Von -\infty < x < a verläuft der Graph Gfa unterhalb der x-Achse und ist somit negative. Daraus kann man schließen, das der Graph GFa in diesem Intervall streng monoton fallend ist.
Von a < x < \infty verläuft der Graph Gfa oberhalb der x-Achse und ist somit positive. Daraus kann man schließen, das der Graph GFa in diesem Intervall streng monoton steigend ist.

2.)Bei x = a ist der Graph Gfa gleich Null ( Gfa = 0 )und das Steiguungsverhalten von GFa ändertfür x < a und x > a das Vorzeichen. Deshalb kann man sagen das der Graph GFa an der Stell x = a einen Extrempunkt, in diesem Fall einen Tiefpunkt ( Minimum ) hat, da sich das Monotonieverhalten von streng monoton fallend in streng monoton steigend verändert.

2. Bestimmung einerStammfunktion von fa durch partielle Integration