Benutzer:Köhler Lisa

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Hausaufgabe vom 25.08.2008 AB Infinitesimalrechnung; S.216/10

Aufgabenstellung: Wie groß ist die Fläche, die vom Graphen Gf der Funktion f(x)=-1/3x2+2x+1, der Ordinate des höchsten Punktes, der x-Achse und der y-Achse eingeschlossen wird?

Datei:Aufgabe10.ggp

1) Berechnung des Maximums: f´(x)=0; -2/3x+2=0; x=3; Maximum (3/4)

2) Flächenberechnung: \int_{0}^{3} 1/3x^2+2x+1\,dx = 9







Hausaufgabe vom 23.09.2008 S.211/7

Aufgabenstellung: Berechne den Inhalt des Segments, das die Gerade mit der Gleichung y-4=0 vom Graphen der Funktion f(x) = 1/4 x^2 abschneidet!


Lösungsanleitung1.png


Lösung

1. Schnittstellen berechnen: x1 = -4 ; x2 = 4

2. A = \int_{-4}^{4} f (4-1/4x^2)\,dx = \left[ 4x-1/4 (x^3)/3\right] = ... = 64/3