Lösung: lokale Extrempunkte

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

y  = f_a (x) = ( x - a )\cdot e^{a+2-x} mit x\in R ; a\in R


Inhaltsverzeichnis

lokale Extrempunkte

Damit man Extrempunkte einer Funktion finden kann, braucht man ihre erste Ableitung

y  = f_a (x) = ( x - a )\cdot e^{a+2-x}

Um die erste Ableitung zu bekommen, muss man hier die Produktregel verwenden [Hilfe zur Produktregel]

 f_a^{'}(x) = ( x - a )\cdot e^{a+2-x}\cdot( -1 ) + 1\cdot e^{a+2-x}
= e^{a+2-x}\cdot (( x - a )\cdot (-1) + 1 )
 = e^{a+2-x}\cdot ( -x + a + 1 )
= e^{a+2-x}\cdot ( 1 + a - x )


Der/Die Extrempunkt/e können an der Stelle liegen, an der die erste Ableitung der Funktion gleich Null ist. Die erste Ableitung einer Funktion zeigt das Steigungsverhalten dieser an. Wenn dieses gleich Null ist, besitzt die Funktion eine waagrechte Tangente an dieser Stelle. Das heißt, es könnte ein Extrempunkt(Maximum / Hochpunkt und/oder Minimum / Tiefpunkt)auftreten.Dies muss jedoch erst mit der zweiten Ableitung oder mit dem Monotonieverhalten der Funktion überprüft werden, da auch ein Terassenpunkt auftreten könnte.


 f_a^{'}(x) = 0  \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;  |e^{a+2-x} > 0
( 1 + a - x ) = 0  \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;  |- 1 ; - a
-x = -1 + a \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;|\cdot (-1)
x = 1 + a \;


X-Koordinate des möglichen Extrempunkts in die Funktion einsetzen, um die y-Koordinate zu erhalten.


 y = f_a ( 1 + a ) = ( 1 + a - a )\cdot e^{a + 2 - ( 1 + a )}
 =  1\cdot e^{a + 2 - 1 - a }
 = 1\cdot e^{1}
 = e \;


\rightarrow Möglicher Extrempunkt: ( 1 + a / e )\;


Überprüfung des Extrempunkts

1. Möglichkeit; H-Methode

Wenn es einen Vorzeichenwechsel (VZW) des Monotonieverhaltens der Funktion am möglichen Extrempunkt gibt, kann man von einem Extrempunkt sprechen.

I.
\lim_{h\to 0}f_a^{'}( 1 + a + h ) = \lim_{h\to 0}( 1 + a -( 1 + a + h )\cdot e^{a + 2 - ( 1 + a + h)}

=\lim_{h\to 0} ( 1 + a - 1 - a - h )\cdot e^{a + 2 - 1 - a - h}
= \lim_{h\to 0}e^{1 - h}\cdot ( -h )
= \lim_{h\to 0}-h\cdot e^{1 - h}


\lim_{h\to 0} f_a^{'} ( 1 + a + h ) < 0

\rightarrow An der Stelle \lim_{h\to 0}f_a^{'}( 1 + a + h )\; fällt der Graph (I)


II.
\lim_{h\to 0}f_a^{'} ( 1 + a - h ) = \lim_{h\to 0}( 1 + a -( 1 + a - h ) e^{a + 2 - ( 1 + a - h)}

= \lim_{h\to 0}( 1 + a - 1 - a + h )\cdot e^{a + 2 - 1 - a + h)}
 = \lim_{h\to 0} e^{1+ h}\cdot ( +h )
= \lim_{h\to 0}+h\cdot e^{1+ h}


\lim_{h\to 0} f_a^{'}  ( 1 + a - h ) > 0

\rightarrow An der Stelle \lim_{h\to 0}f_a^{'}( 1 + a - h )\; steigt der Graph (II)


Aus (I) und (II) folgt:
VZW bei x = 1 + a\;
\Rightarrow Extrempunkt bei ( 1 + a / e )\;
Bei diesem Extrempunkt handelt es sich um ein Maximum, da das Monotonieverhalten des Graphen von f_a\, kurz vor dem Extrempunkt streng monoton steigend und kurz nach dem Extrempunkt streng monoton fallend ist.

zur Verdeutlichung

Monotonieverhalten
x<1+a x=1+a x>1+a
ea + 2 - x + +
( 1 + a - x ) + -
fa' ( x ) + -
\;\;\;\nearrow \;\;\;\;\;\;\;\;\; \searrow


\rightarrow Maximum \;( 1 + a / e )\;

2. Möglichkeit; 2.Ableitung

Überprüfung durch die zweite Ableitung [Hilfe zur Produktregel]


y = f_a (x) = ( x - a )\cdot e^{a + 2 - x}


f_a^{'}(x) = e^{a + 2 - x}\cdot ( 1 + a - x )


f_a^{''}(x) = e^{a + 2 - x}\cdot ( 1 + a - x )\cdot ( -1 ) +  ( -1 )\cdot e^{a + 2 - x}
= -e^{a + 2 - x}\cdot ( 1 + a - x + 1 )
= e^{a + 2 - x}\cdot ( x - a - 2 )


Falls die zweite Ableitung an dem möglichen Extrempunkt größer als Null ist, tritt ein Minimum auf. Falls sie kleiner als Null ist, handelt es sichum ein Maximum, bei gleich Null könnte ein Terrassenpunkt auftreten.


f_a^{''} ( 1 + a ) = e^{a + 2 - ( 1 + a )}\cdot ( ( 1 + a ) - a - 2 )
= e^{a + 2 - 1 - a }\cdot ( -1 )
= e^{1}\cdot ( -1 )
 < 0\;


\rightarrow   Max ( 1 + a / e )


--Andre Etzel 23:49, 22. Jan. 2010 (UTC)