Abi 2016 Analysis II Teil A: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 45: Zeile 45:
 
;Aufgabe 2
 
;Aufgabe 2
 
2) Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt. <br> <br>
 
2) Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt. <br> <br>
a) Der Punkt (2|0) ist ein Wendepunkt des Graphen von g. <br> <br>
+
a) Der Punkt ( 2 | 0 ) ist ein Wendepunkt des Graphen von g. <br> <br>
 
b) Der Graph der Funktion h ist streng monoton fallend und rechtsgekrümmt.  
 
b) Der Graph der Funktion h ist streng monoton fallend und rechtsgekrümmt.  
  
Zeile 92: Zeile 92:
  
 
;Aufgabe 4
 
;Aufgabe 4
4) Abbildung 2 zeigt den Graphen G<sub>k</sub> einer in IR definierten Funktion k. Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion k'. Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen G<sub>k</sub> an dessen Wendepunkt (0|-3) sowie die Nullstelle von k'.  
+
4) Abbildung 2 zeigt den Graphen G<sub>k</sub> einer in IR definierten Funktion k. Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion k'. Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen G<sub>k</sub> an dessen Wendepunkt ( 0 | -3 ) sowie die Nullstelle von k'.  
  
 
[[Bild:ABI2016_AII_TeilA_4.jpg|center|350px]]
 
[[Bild:ABI2016_AII_TeilA_4.jpg|center|350px]]

Aktuelle Version vom 26. Juli 2017, 08:18 Uhr


Mathematik (Bayern): Abiturprüfung 2016
Analysis II - Teil A


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1

1) Gegeben ist die Funktion f(x)= \frac{ln(x)}{x^2} mit maximalem Definitionsbereich D.

a) Geben Sie D sowie die Nullstelle von f an und bestimmen Sie \lim_{x\to 0} f(x).

b) Ermitteln Sie die x-Koordinate des Punkts, in dem der Graph von f eine waagrechte Tangente hat.



Aufgabe 2

2) Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

a) Der Punkt ( 2 | 0 ) ist ein Wendepunkt des Graphen von g.

b) Der Graph der Funktion h ist streng monoton fallend und rechtsgekrümmt.



Aufgabe 3

3) Abbildung 1 zeigt den Graphen der in IR definierten Funktion f.

ABI2016 AII TeilA 3.jpg

a) Bestimmen Sie mithilfe von Abbildung 1 einen Näherungswert für  \int_{3}^{5} f (x)\,dx .

Die Funktion F ist die in IR definierte Stammfunktion von f mit F(3) = 0.

b) Geben Sie mithilfe von Abbildung 1 einen Näherungswert für die Ableitung von F an der Stelle x = 2 an.

c) Zeigen Sie, dass  F(b) = \int_{3}^{b} f (x)\,dx mit b ∈ IR gilt.




Aufgabe 4

4) Abbildung 2 zeigt den Graphen Gk einer in IR definierten Funktion k. Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion k'. Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen Gk an dessen Wendepunkt ( 0 | -3 ) sowie die Nullstelle von k'.

ABI2016 AII TeilA 4.jpg