2008 II: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 9: Zeile 9:
  
  
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=6765c5a90ce67dce2877992c3f4e2d9f '''Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern''']  -  [[Media:ABI 2008 II.doc|download Musterlösung gesamt]]
+
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=6765c5a90ce67dce2877992c3f4e2d9f '''Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern''']   
 
<br />Erstellt von Alistair Mainka und Benjamin Schleicher.</center>
 
<br />Erstellt von Alistair Mainka und Benjamin Schleicher.</center>
  

Aktuelle Version vom 15. Februar 2011, 14:51 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2008
Infinitesimalrechnung II


Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern
Erstellt von Alistair Mainka und Benjamin Schleicher.


Aufgabe 1

Gegeben ist die Funktion f(x)=e^{1-0,5x^2} mit Definitionsbereich Df = IR . Die Abbildung auf der folgenden Seite zeigt den Graphen Gf von f.

a) Untersuchen Sie Gf rechnerisch auf Symmetrie und Schnittpunkte mit den Achsen. Bestimmen Sie das Verhalten von f für x → + ∞ und x → − ∞. (4BE)

ABI 2008 II A1a Lös1.jpg

b) Zeigen Sie, dass gilt: f''(x)=(x^2-1)e^{1-0,5x^2}. Bestimmen Sie durch Rechnung das Monotonieverhalten von f und die Koordinaten der Wendepunkte. (6BE)

ABI 2008 II A1b Lös1.jpg



Aufgabe 2

Die Integralfunktion F ist definiert durch F(x)=\int_{0}^{x} f (t)\,dt, x ∈ IR.

a) Untersuchen Sie das Symmetrie-, Monotonie- und Krümmungsverhalten des Graphen von F. Bestimmen Sie aus der Abbildung mit Hilfe des Gitternetzes Näherungswerte für F(0,5), F(1), F(2) und F(4). Tragen Sie den Graphen von F im Bereich x ∈[−4;4] in die gegebene Abbildung ein. (8BE)

ABI 2008 II A2a Lös1.jpg

Könnt ihr die Abbildung mit dem eingezeichneten Graphen von F noch hochladen?

b) Für x > 1 gilt offensichtlich xe^{1-0,5x^2} > e^{1-0,5x^2}. Zeigen Sie damit, dass \int_{4}^{\infty } f (x)\,dx < 10^{-3} ist. Was folgt für die Funktionswerte von F für x ≥ 4? (5BE)

ABI 2008 II A2b Lös1.jpg

Bemerkung:
Zweiter Teil der Aufgabe fehlt: Funktionswerte von F(x) für x ≥ 4 sind sehr klein, F(x) liegt nur noch minimal über x-Achse.



Aufgabe 3

Die Funktion f soll im Folgenden in einer Umgebung von x = 0 durch eine Polynomfunktion p mit dem Term p(x) = ax^4 + bx^2 + c , a, b, c ∈ IR , angenähert werden.

a) Bestimmen Sie die Koeffizienten a, b und c so, dass f und p an der Stelle x = 0 im Funktionswert und in den Werten der 1. bis einschließlich 4. Ableitung übereinstimmen. Ohne Nachweis darf verwendet werden: f '''(0) = 0, f ''''(0) = 3e (6BE)

[Zur Kontrolle: p(x) = e \cdot (\frac{1}{8}x^4 - \frac{1}{2} x^2 + 1)]

ABI 2008 II A3a Lös1.jpg

b) Zeigen Sie, dass p keine Nullstelle besitzt. Berechnen Sie den Inhalt A der Fläche, die von den Koordinatenachsen, dem Graphen von p und der Geraden x = 1 eingeschlossen wird, auf 4 Dezimalen gerundet. (5BE)

[Zur Kontrolle: A ≈ 2,3332]

ABI 2008 II A3b Lös1.jpg

c) Bestimmen Sie nun den Wert des Integrals \int_{0}^{1} f (x)\,dx mit Hilfe der Gauß’schen  \varphi -Funktion(\varphi(x) = \frac{1}{\sqrt{2\pi } } e^{-0,5x^2}) und dem stochastischen Tafelwerk. Um wie viel Prozent weicht der Näherungswert aus Teilaufgabe 3b von diesem Ergebnis ab? (6BE)

ABI 2008 II A3c Lös1.jpg