Flächenberechnung: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 46: Zeile 46:
 
(ja)  (!nein)
 
(ja)  (!nein)
  
 +
<big>'''Behauptung 8: '''</big>
 +
 +
Die Winkel im Paralleogramm betragen jeweils immer <math>70^\circ</math>
 +
 +
(!ja)  (nein)
 +
 +
<big>'''Behauptung 9: '''</big>
 +
 +
Eine Diagonale teilt das Parallelogramm in zwei gleich große Dreiecke.
 +
 +
(ja)  (!nein)
 
</div>
 
</div>
  
Zeile 51: Zeile 62:
 
<ggb_applet width="550" height="350" filename="Parallelogramm Hilfe.ggb" showResetIcon="true" />
 
<ggb_applet width="550" height="350" filename="Parallelogramm Hilfe.ggb" showResetIcon="true" />
 
}}
 
}}
 +
 +
<br><br><div style="margin:0px; margin-right:90px; border:thick double red; padding: 1em 1em 1em 1em; background-color:white;  width:90%; align:center; ">
 +
<span style="color: red">'''Eigenschaften des Parallelogramms:'''</span>
 +
*Gegenüberliegende Seiten sind parallel und gleich lang.
 +
*Gegenüberliegende Winkel sind gleich groß.
 +
*Je zwei benachbarte Winkel ergänzen sich zu <math>180^\circ</math>.
 +
*Die Diagonalen halbieren sich gegenseitig.
 +
*Jede Diagonale teilt das Parallelogramm in zwei gleich große Dreiecke.
 +
*Rechteck und Quadrat sind spezielle Parallelogramme.
 +
</div>

Version vom 6. August 2010, 20:57 Uhr

Flächenberechnung des Parallelogramms

Bevor wir uns Gedanken über die Fläche eines Parallelogramms machen, wollen wir uns erst einmal anschauen was ein Parallelogramm überhaupt ist und was es für Eigenarten hat. Dazu hab ich Behauptungen aufgestellt, die aber nicht alle auf das Parallelogramm zutreffen. Falls du dir nicht mehr ganz sicher bist wie das Parallelogramm aussieht kannst du unten nachkucken.

Behauptung 1:

Gegenüberliegende Winkel sind gleich groß.

(ja) (!nein)

Behauptung 2 :

Gegenüberliegende Winkel ergänzen sich zu 360^\circ.

(!ja) (nein)

Behauptung 3:

Die Diagonalen im Parallelogramm halbieren sich gegenseitig.

(ja) (!nein)

Behauptung 4:

Gegenüberliegende Seiten sind parallel.

(ja) (!nein)

Behauptung 5:

Die Seiten eines Parallelogramms sind alle unterschiedlich lang.

(!ja) (nein)

Behauptung 6:

Rechteck und Quadrat sind besondere Parallelogramme.

(ja) (!nein)

Behauptung 7:

Gegenüberliegende Seiten sind gleich lang.

(ja) (!nein)

Behauptung 8:

Die Winkel im Paralleogramm betragen jeweils immer 70^\circ

(!ja) (nein)

Behauptung 9:

Eine Diagonale teilt das Parallelogramm in zwei gleich große Dreiecke.

(ja) (!nein)



Eigenschaften des Parallelogramms:

  • Gegenüberliegende Seiten sind parallel und gleich lang.
  • Gegenüberliegende Winkel sind gleich groß.
  • Je zwei benachbarte Winkel ergänzen sich zu 180^\circ.
  • Die Diagonalen halbieren sich gegenseitig.
  • Jede Diagonale teilt das Parallelogramm in zwei gleich große Dreiecke.
  • Rechteck und Quadrat sind spezielle Parallelogramme.