2004 VI: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K
K (Angabe in eigenen Kasten gesetzt)
 
Zeile 26: Zeile 26:
 
In einem kartesischen Koordinatensystem des '''R'''<sup>3</sup> sind die Punkte <math>O \left( 0 / 0 / 0 \right)</math>, <math>A \left( 10 / 0 / 0 \right)</math>, <math>B \left( 0 / 4 / 0 \right)</math>, <math>S \left( 0 / 0 / 6 \right)</math> sowie die Ebenenschar E<sub>t</sub>: 3x<sub>2</sub> + tx<sub>3</sub> - 3t = 0 mit t <math>\in</math> '''R''' gegeben. Die Punkte A, B und S legen die Ebene F fest.
 
In einem kartesischen Koordinatensystem des '''R'''<sup>3</sup> sind die Punkte <math>O \left( 0 / 0 / 0 \right)</math>, <math>A \left( 10 / 0 / 0 \right)</math>, <math>B \left( 0 / 4 / 0 \right)</math>, <math>S \left( 0 / 0 / 6 \right)</math> sowie die Ebenenschar E<sub>t</sub>: 3x<sub>2</sub> + tx<sub>3</sub> - 3t = 0 mit t <math>\in</math> '''R''' gegeben. Die Punkte A, B und S legen die Ebene F fest.
  
 +
</td></tr></table></center>
 +
 +
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 +
 +
 +
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 +
<tr><td  width="800px" valign="top">
  
 
;Aufgabe 1
 
;Aufgabe 1

Aktuelle Version vom 7. April 2010, 15:38 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2004
Analytische Geometrie VI


Download der Originalaufgaben: Abitur 2004 LK Mathematik Bayern - Lösung gesamt


Erarbeitet von Luka Hornung, Jan-Peter Neutert


In einem kartesischen Koordinatensystem des R3 sind die Punkte O \left( 0 / 0 / 0 \right), A \left( 10 / 0 / 0 \right), B \left( 0 / 4 / 0 \right), S \left( 0 / 0 / 6 \right) sowie die Ebenenschar Et: 3x2 + tx3 - 3t = 0 mit t \in R gegeben. Die Punkte A, B und S legen die Ebene F fest.


Aufgabe 1
a) Bestimmen Sie eine Gleichung der Ebene F in Normalenform.
3 BE
[mögliches Ergebnis: 6x1 + 15x2 + 10x3 - 60 = 0]
[Lösung anzeigen]


b) Berechnen Sie, unter welchem Winkel die Ebene F die x1x2 - Ebene schneidet.
3 BE
[Lösung anzeigen]


c) Zeigen Sie, dass die Ebene E2 parallel zur Geraden BS ist.
3 BE
[Lösung anzeigen]


d) Zeigen Sie, dass die zu AO parallele Mittelparallele des Dreiecks AOS identisch ist mit der Geraden p, die alle Ebenen der Schar Et gemeinsam haben.
5 BE
[Lösung anzeigen]


Aufgabe 2

Die Punkte A, B, O und S bilden die Ecken der Pyramide ABOS.

a) Legen Sie ein Koordinatensystem an. Zeichnen Sie die Pyramide ABOS, die Gerade p und die Schnittfläche der Ebene E2 mit der Pyramide ein.
5 BE
[Lösung anzeigen]


b) Berechnen Sie das Volumen der Pyramide ABOS.
3 BE
[Lösung anzeigen]


c) Zeigen Sie, dass die Ebene E2 die Pyramide ABOS in zwei Teilkörper mit gleichem Volumen zerlegt.
6 BE

(Hinweis: Zerlegen Sie einen der beiden Teilkörper in ein dreiseitiges Prisma und eine dreiseitige Pyramide.)

[Lösung anzeigen]


Aufgabe 3
a) Zeigen Sie, dass M \left( 1,2 / 1,2 / 1,2 \right) der Mittelpunkt der Inkugel K der Pyramide ABOS ist.
5 BE
[Lösung anzeigen]


b) Die Ebenenschar Et enthält neben der x1x3 - Ebene eine weitere Tangentialebene von K. Berechnen Sie den zugehörigen Wert von t.
7 BE
[Lösung anzeigen]