2004 VI: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K
K
Zeile 24: Zeile 24:
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
  
In einem kartesischen Koordinatensystem des '''R'''<sup>3</sup> sind die Punkte O <math>\left( 0 / 0 / 0 \right)</math>, A <math>\left( 10 / 0 / 0 \right)</math>, B <math>\left( 0 / 4 / 0 \right)</math>, S <math>\left( 0 / 0 / 6 \right)</math> sowie die Ebenenschar E<sub>t</sub>: 3x<sub>2</sub> + tx<sub>3</sub> - 3t = 0 mit t <math>\in</math> '''R''' gegeben. Die Punkte A, B und S legen die Ebene F fest.
+
In einem kartesischen Koordinatensystem des '''R'''<sup>3</sup> sind die Punkte <math>O \left( 0 / 0 / 0 \right)</math>, <math>A \left( 10 / 0 / 0 \right)</math>, <math>B \left( 0 / 4 / 0 \right)</math>, <math>S \left( 0 / 0 / 6 \right)</math> sowie die Ebenenschar E<sub>t</sub>: 3x<sub>2</sub> + tx<sub>3</sub> - 3t = 0 mit t <math>\in</math> '''R''' gegeben. Die Punkte A, B und S legen die Ebene F fest.
  
 
;Aufgabe 1
 
;Aufgabe 1
  
:a) Bestimmen Se eine Gleichung der Ebene F in Normalenform.<div align="right">''3 BE''</div>
+
:a) Bestimmen Sie eine Gleichung der Ebene F in Normalenform.<div align="right">''3 BE''</div>
  
 
:::[mögliches Ergebnis: 6x<sub>1</sub> + 15x<sub>2</sub> + 10x<sub>3</sub> - 60 = 0]
 
:::[mögliches Ergebnis: 6x<sub>1</sub> + 15x<sub>2</sub> + 10x<sub>3</sub> - 60 = 0]

Version vom 1. April 2010, 18:38 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2004
Analytische Geometrie VI


Download der Originalaufgaben: Abitur 2004 LK Mathematik Bayern - Lösung gesamt


Erarbeitet von Luka Hornung, Jan-Peter Neutert


In einem kartesischen Koordinatensystem des R3 sind die Punkte O \left( 0 / 0 / 0 \right), A \left( 10 / 0 / 0 \right), B \left( 0 / 4 / 0 \right), S \left( 0 / 0 / 6 \right) sowie die Ebenenschar Et: 3x2 + tx3 - 3t = 0 mit t \in R gegeben. Die Punkte A, B und S legen die Ebene F fest.

Aufgabe 1
a) Bestimmen Sie eine Gleichung der Ebene F in Normalenform.
3 BE
[mögliches Ergebnis: 6x1 + 15x2 + 10x3 - 60 = 0]
[Lösung anzeigen]


b) Berechnen Sie, unter welchem Winkel die Ebene F die x1x2 - Ebene schneidet.
3 BE
[Lösung anzeigen]


c) Zeigen Sie, dass die Ebene E2 parallel zur Geraden BS ist.
3 BE
[Lösung anzeigen]


d) Zeigen Sie, dass die zu AO parallele Mittelparallele des Dreiecks AOS identisch ist mit der Geraden p, die alle Ebenen der Schar Et gemeinsam haben.
5 BE
[Lösung anzeigen]