2009 I: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(angelegt)
 
Zeile 42: Zeile 42:
 
Halbkreis in Bild 1 Graph der Funktion 2 2
 
Halbkreis in Bild 1 Graph der Funktion 2 2
 
f1 : x a r − x mit
 
f1 : x a r − x mit
− r ≤ x ≤ r ist. Die Halbkreise der Bilder 2 und 3 sind Graphen der
+
− r ≤ x ≤ r ist.  
 +
 
 +
:{{Lösung versteckt|1=
 +
 
 +
[[Bild:ABI_2008_I_A3_1_Lös.jpg|800px]]
 +
 
 +
 
 +
Die Halbkreise der Bilder 2 und 3 sind Graphen der
 
Funktionen f2 und f3 . Geben Sie jeweils Term und Definitionsmenge
 
Funktionen f2 und f3 . Geben Sie jeweils Term und Definitionsmenge
 
für f2 und f3 an.
 
für f2 und f3 an.

Version vom 3. Februar 2010, 17:59 Uhr

Aufgabe 1

Gegeben ist die Schar der Funktionen

a mit k ∈ IR+ und der Definitionsmenge IR . Der Graph von fk wird mit Gk bezeichnet. a) Untersuchen Sie Gk auf Symmetrie und geben Sie das Verhalten von fk für x → −∞ und x → +∞ an.

b) Bestimmen Sie Art und Lage der Extrempunkte von Gk . Die Hochpunkte von Gk bilden den Graphen einer Funktion h. Ermitteln Sie Funktionsterm und Definitionsmenge von h. [Teilergebnis: Hochpunkt bei x = k ] c) Zeigen Sie, dass zwei verschiedene Graphen der Schar nur den Koordinatenursprung gemeinsam haben.

d) Skizzieren Sie unter Verwendung der bisherigen Ergebnisse die Graphen Gk für k = 0,25 und k =1 in ein gemeinsames Koordinatensystem (Längeneinheit 2 cm). Zeichnen Sie auch den Graphen von h ein.

e) Für jedes k begrenzt Gk mit der x-Achse im I. Quadranten ein Flächenstück, das sich ins Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück keinen endlichen Inhalt besitzt. Für beliebige positive k1, k2 (k1 ≠ k2 ) begrenzen Gk1 und Gk 2im I. Quadranten ein Flächenstück, das sich ebenfalls ins Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück einen endlichen Inhalt hat, und geben Sie diesen an.


Aufgabe 2

Nun wird die Schar der Funktionen k 2 k x

a für k∈ IR0− betrachtet. Geben Sie die maximale Definitionsmenge Dk von fk in Abhängigkeit von k an. Zeigen Sie, dass an den Definitionslücken Polstellen vorliegen. Hat fk an den Polstellen einen Vorzeichenwechsel? Begründen Sie Ihre Antwort.

Aufgabe 3

a) Die drei folgenden Abbildungen zeigen Halbkreise mit Radius r und Mittelpunkten (0 | 0), (0 | r) und (r | 0) . Begründen Sie, dass der Halbkreis in Bild 1 Graph der Funktion 2 2 f1 : x a r − x mit − r ≤ x ≤ r ist.

{{Lösung versteckt|1=

ABI 2008 I A3 1 Lös.jpg


Die Halbkreise der Bilder 2 und 3 sind Graphen der Funktionen f2 und f3 . Geben Sie jeweils Term und Definitionsmenge für f2 und f3 an.


b) Ein kugelförmiger Tank hat den Innenradius r und ist mit einer Flüssigkeit gefüllt. Die Höhe der eingefüllten Flüssigkeit ist h. Zeigen Sie mit Hilfe der Integralrechnung, dass für das Volumen V der eingefüllten Flüssigkeit gilt: V (rh h3) 3 = π 2 − 1 . 40