Nullstellen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(/Link geändert)
Zeile 20: Zeile 20:
  
 
<popup name="Rechnerische Lösung">
 
<popup name="Rechnerische Lösung">
:Durch Ausklammern von t erhält man zum einen die erste Nullstelle, zum anderen auch eine quadratische Funktion, welche man mit Hilfe der [http://de.wikipedia.org/wiki/Quadratische_Gleichung#L.C3.B6sungsformeln Mitternachtsformel] lösen kann.
+
:Durch Ausklammern von t erhält man zum einen die erste Nullstelle, zum anderen auch eine quadratische Funktion, welche man mit Hilfe der [http://de.wikipedia.org/wiki/Quadratische_Gleichung#L.C3.B6sungsformeln Lösungsformel für quadratische Gleichungen] lösen kann.
  
 
:<math>f(t) = t (\frac{1}{4} t^2 - a t + a^2) \rightarrow t_1 = 0 \Rightarrow N_1\left( 0 / 0 \right) </math>
 
:<math>f(t) = t (\frac{1}{4} t^2 - a t + a^2) \rightarrow t_1 = 0 \Rightarrow N_1\left( 0 / 0 \right) </math>

Version vom 23. Januar 2010, 20:08 Uhr

Aufgabe: Nullstellen

Es soll bestimmt werden, abhängig vom Parameter a, zu welchen Monaten kein Wasser durch den Fluss fließt.

Es sind die Zeitpunkte gesucht, an denen der y - Wert Kubikmeter in Millionen gleich Null ist. An dieser Nullstelle fließt also kein Wasser durch den Fluss.


Aus der Animation des Applets kann man erkennen,
  • dass jede Funktion f (t) zwei Nullstellen besitzt.
  • dass die erste Nullstelle immer im Ursprung ist. N1( 0 / 0 )
  • dass die zweite Nullstelle
  • von a abhängig ist, da sie sich, bei Wechsel von a, verändert.
  • eine doppelte Nullstelle ist, da sie an der Stelle einen Vorzeichenwechsel der Steigung besitzt.


Errechne rechnerisch die beiden Nullstellen der Funktion. Setze dazu die Funktion gleich Null.



Hier geht's zur Aufgabe: Extremwerte

Hier geht's zurück zur Übersicht