Gliederung: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Teilaufgabe e))
Zeile 42: Zeile 42:
  
 
zu [[Facharbeit Andre Etzel/Teilaufgabe e|Teilaufgabe e)]]
 
zu [[Facharbeit Andre Etzel/Teilaufgabe e|Teilaufgabe e)]]
 +
 +
 +
 +
  
 
--[[Benutzer:Andre Etzel|Andre Etzel]] 22:42, 20. Jan. 2010 (UTC)
 
--[[Benutzer:Andre Etzel|Andre Etzel]] 22:42, 20. Jan. 2010 (UTC)

Version vom 20. Januar 2010, 23:42 Uhr

Für jede reelle Zahl a sei eine Funktion fa durch y  = f_a (x) = ( x - a )\cdot e^{a+2-x} mit x\in R gegeben.


Inhaltsverzeichnis

Teilaufgabe a)

1.Untersuchen Sie den Graphen von fa auf:
  • Schnittpunkte mit den Koordinatenachsen,
  • lokale Extrempunkte und
  • Wendepunkte!
Bestimmen Sie gegebenenfalls deren Koordinaten!
2.Alle Extrempunkte liegen auf dem Graphen einer Funktion h. Geben Sie eine Funktionsgleichung von h an!
3.Skizzieren Sie den Graphen der Funktion f2 für 1,6 < x <7!

zu Teilaufgabe a)


Teilaufgabe b)

1. Geben Sie aufgrund Ihrer Ergebnisse aus Teilaufgabe a)zwei Eigenschaften des Graphen einer Stammfunktion von fa an!
2.Bestimmen Sie durch partielle Integration eine Gleichung einer Stammfunktion von fa!
3.Die x-Achse und der Graph der Funktion f2 begrenzen im I. Quadranten eine nach rechts ins Unendliche reichende Fläche. Berechnen sie deren Inhalt!
Hinweis: \lim_{x\to\infty}x\cdot e^{-x} = 0

zu Teilaufgabe b)

Teilaufgabe c)

Im Punkt Wa(a+2; fa(a+2)) werde die Tangente an den Graphen von fagelegt
1. Für welchen Wert von a schneidet diese Tangente die y-Achse im Punkt A(0;2012)?
Nun sei a = 2.
2. Berechnen Sie alle Stellen xB, für die die Tangente die y-Achse im Punkt B(xB;f2(xB)) an den Graphen von f2 durch den Koordinatenursprung verläuft!

zu Teilaufgabe c)

Teilaufgabe d)

Für jeden Wert von a bilden die Punkte Ra (a / fa(a)), Ha (a+1 / fa(a+1)) und Wa (a+2 / fa(a+2)) ein Dreieck.

1.Zeigen Sie, dass alles diese Dreiecke zueinander kongruent sind!
2.Berechnen Sie deren Flächeeninhalt!

zu Teilaufgabe d)

Teilaufgabe e)

Beweisen Sie, dass für die n-te Ableitung (n>1) der Funktion fa gilt:

y=f_a(x)=(-1)^{n+1}\cdot(n-x+a)\cdot e^{a+2-x}

zu Teilaufgabe e)



--Andre Etzel 22:42, 20. Jan. 2010 (UTC)