LK Mathematik Abitur NRW 2007: Unterschied zwischen den Versionen
K |
(→Aufgabe: Wendepunkt) |
||
Zeile 190: | Zeile 190: | ||
'''''<span style="color: darkorange">Es soll, in Abhängigkeit von a bestimmt werden, wann die Druchflussgeschwindigkeit besonders stark absinkt. Dieser Wert soll zum Zeitpunkt t berechnet werden.</span> | '''''<span style="color: darkorange">Es soll, in Abhängigkeit von a bestimmt werden, wann die Druchflussgeschwindigkeit besonders stark absinkt. Dieser Wert soll zum Zeitpunkt t berechnet werden.</span> | ||
− | Hier ist der Punkt gesucht, | + | {| |
+ | |width=400px| | ||
+ | :''Hier ist der Punkt gesucht, an dem die Durchflussgeschwindigkeit am stärksten absinkt.'' | ||
− | < | + | :*Dazu schaut man sich die erste Ableitung näher an, da diese die Steigung eines Graphen G<sub>f</sub> zeigt. |
− | Da es sich bei der ersten Ableitung um eine nach oben geöffnete Parabel handelt, ist das Minimum des Graphen gleichzeitig der Punkt, an dem die Steigung besonders stark abfällt. | + | :*Da es sich bei der ersten Ableitung um eine nach oben geöffnete Parabel handelt, ist das Minimum des Graphen gleichzeitig der Punkt, an dem die Steigung besonders stark abfällt. |
+ | :*Es ist also das Minimum der ersten Ableitung gesucht. | ||
+ | :<math>\Rightarrow f ''(t) = 0</math> | ||
− | + | :''An dem erhaltenem Punkt besitzt der Graph G<sub>f</sub> den größten negativen Steigungswert. Dieser Punkt heißt Wendepunkt. An ihm ändert der Graph sein Krümmungsverhalten.'' | |
− | + | ||
− | + | ||
− | : | + | |
::<span style="color: darkblue">Errechne die Koordinaten des Wendepunktes.</span> | ::<span style="color: darkblue">Errechne die Koordinaten des Wendepunktes.</span> | ||
Zeile 215: | Zeile 216: | ||
}} | }} | ||
+ | |||
+ | |width=5px| | ||
+ | |valign="top" | | ||
+ | Die '''<span style="color: blue">blaue Funktion zeigt die Ableitung f '(t)</span> der schwarzen Funktion f (t). | ||
+ | <ggb_applet width="319" height="411" version="3.2" ggbBase64="UEsDBBQACAAIAM+KLzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1sxVhNb+M2ED13fwWh026L2BIlOzZgZ5Fu9xAg7S7gfgA9FKAlSmYjkapIJXJ+fYcfsmU7Ti0n2V4icjgkZx7fPNKZfWyKHN3TSjLB514w8D1EeSwSxrO5V6v0YuJ9vHo3y6jI6LIiKBVVQdTcCwfY0/aaXb37biZX4gGR3Lj8zujD3EtJLqmHZFlRksgVpWrHTuqG5YxU6y/Lv2ms5HbALnLDyxp2UVUNtrhIbplsu0O9YSq4QkiyRwpBY22bDU0sM1rHOUsY4Xo/Exs4IfTAErWCsIOph1aUZStYLvKndrVYiCpZrKWiBWr+pJWAsckgCqPL0XgShPgyGGEPre0IngYDHODQH/tRMBpfTiDLmOQQSOgPwikOpn40Gk+nejZMOj5mtqb3C6oUoC0RaahsU84qlnTbN/JHkScblErBuPpESlVX5qBCZ1qotd4MDrHSKV7zLKfOBgnEKxrfLUWzsLCFdulf16WZYsJZZp9ELipUwYQRhJ+579J+jY+Oc+PlGx/feLg19KKb8WCKjYf5Lu3XeOWM29Bc3mGbdOC32zCJtAEW1/xq4cjJkuZzz0M1Z+q27SgW37lMA+v/S10sgdftNO3wE7CI8Jhaou/uErzdLrPhHilnd7TiNLfU43D6tagluid5e8AmtITGrICuHXCwEX2kv0FM1prQrKLO35WOBdWM+l1675lnwzYIHYOE8GMFGgAZKJ2eLlG1EpVuJURpiy6unBYUKk8ZzvC6oBWLN2ART+8GW9Ruo7BF2eiDMKW+4bCbtK1pGD9CK1CFckWgNQgceciaVjs5mtV+Fonb2flJQB0cC9ZqW0GauTfWLbKUIq8VXcQAIL8VMVFGAu05OrkIfF/7wpzLiW6sISesGylr6LYcASf2CAdJdvLZMlytgBacSmnKUHULjnA4YwM8qE/popQl1aubduuNSkjaFPuGIsArex76ZBpQWqlVvAU2BSVvYMX0ffMBzREshoYogr/fo+av93A0H9AFIraHde8HRFwLbB4aHpx3WnPDEW+7xdE8ozbyYPQEBXZqrB8D/BMZ4D9zCHvBdXGMRVEQniBOChj/qkXVJMn0hYSIr5O2sdaqtXx2F5Cbe4CbkeZNup+xd1ZJtHrcF5IvaSqpMhw2BL4YPVcxhtjWsg3DCIjUS2BXBaYaHjs6aq8ffdWauVHXeqA8L4Q76AV38H/BrZ8aGm/8ArzHDm//FLyf14PM6UFm9SDc1QNs9QCbvlGFrR6cpAXZcS0Y7WnecSno3H7HtAD70flq8CTaJ8Tcj7LZAWWv+zD2+pCwp4AUYEtY83XvtbOB2r+W9M176rX0lF78F3/DA/4++9JY7r808AkvjRPI9YKnxksQO5645uYmgfh4iYXt+vi1X1yvUWFbPgR7fLjYHNxpadF/uHWS9hXOijJnMVM9UExeB8WebHpjGMffHEZ6Lox9Bf8bohi9DYq7N8YNV/CDEaA4eOggEmhcEcEdoezcIn987XONgPc57+5z3z19wY8c+FHfl82w+3PV/N/H/W/q6l9QSwcInOZh53wEAADNEgAAUEsBAhQAFAAIAAgAz4ovPJzmYed8BAAAzRIAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAAC2BAAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | ||
+ | |} | ||
===Aufgabe: Theoretische Überlegungen zur Funktion=== | ===Aufgabe: Theoretische Überlegungen zur Funktion=== |
Version vom 15. Januar 2010, 17:34 Uhr
Inhaltsverzeichnis |
Angabe
Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorherzusagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar fa mit , a > 0
Die Funktion gibt dabei die Durchflussgeschwindigkeit in 106 und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage
(t = 0) an. Die Funktion berücksichtigt, dass es sich um einen Fluss handelt, der zeitweise austrocknet.
Aufgabe: Nullstellen
Es soll bestimmt werden, abhängig vom Parameter a, zu welchen Monaten kein Wasser durch den Fluss fließt.
|
|
Aufgabe: Extremwerte
Es soll, in Abhängigkeit von a, ermittelt werden, zu welchen Zeitpunkten t ein relatives Maximum bzw. Minimum vorliegt. Diese Funktionswerte sollen berechnet werden.
|
Man hat nun die Extremwerte in Abhängigkeit von a ermittelt. Um nun zu prüfen ob es sich bei den Extrema um Maxima oder Minima handelt, kann man hier anhand verschiedener Lösungen vorgehen.
Aufgabe: WendepunktEs soll, in Abhängigkeit von a bestimmt werden, wann die Druchflussgeschwindigkeit besonders stark absinkt. Dieser Wert soll zum Zeitpunkt t berechnet werden.
Aufgabe: Theoretische Überlegungen zur FunktionWarum liegt kein Punkt der Funktionsgraphen von fa im Bereich unterhalb der t - Achse und inwiefern ist dies mit dem zugrunde liegenden Sachverhalt vereinbar.
Aufgabe: Flächenberechnung einer FunktionErmittle für a = 3, wie viel Liter Wasser in den ersten sechs Monaten durch den Fluss fließen.
Aufgabe: Flächengleichheit zweier FunktionenBetrachte nun zwei unterschiedliche Funktionen fa1 und fa2. Es soll der Zeitpunkt bestimmt werden, zu dem für beide Funktionsannahmen (seit t = 0) genau gleich viel Wasser durch den Fluss geflossen wäre.
|