LK Mathematik Abitur NRW 2007: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 213: Zeile 213:
 
:Um Auszurechnen, wieviel Kubikliter Wasser durch den Fluss fließen, errechnet man die Fläche unter der Funktion. Dies lässt sich durch die Integralrechnung bestimmen. Einfache, bereits bekannte Flächenberechnungen gibt es bei linearen Funktionen. Um hier die Fläche auszurechnen, die der Graph mit der x - Achse einschließt, nimmt man einfach die gebräuchlichen Flächenformeln, wie die Rechtecksformel oder die Dreiecksformel.  
 
:Um Auszurechnen, wieviel Kubikliter Wasser durch den Fluss fließen, errechnet man die Fläche unter der Funktion. Dies lässt sich durch die Integralrechnung bestimmen. Einfache, bereits bekannte Flächenberechnungen gibt es bei linearen Funktionen. Um hier die Fläche auszurechnen, die der Graph mit der x - Achse einschließt, nimmt man einfach die gebräuchlichen Flächenformeln, wie die Rechtecksformel oder die Dreiecksformel.  
  
:Hier kannst du ein <popup name="Beispiel">
+
:Hier kannst du ein  
:lassen
+
[[Bild:Integral.jpg]]
  
 
::<span style="color: darkblue">Es wird die Funktion gesucht, deren Ableitung die Funktion f<sub>a</sub> (t) ist. Gebe diese Funktion an und errechne mit ihr für a = 3, wieviel Liter durch den Fluss geflossen sind.</span>
 
::<span style="color: darkblue">Es wird die Funktion gesucht, deren Ableitung die Funktion f<sub>a</sub> (t) ist. Gebe diese Funktion an und errechne mit ihr für a = 3, wieviel Liter durch den Fluss geflossen sind.</span>

Version vom 8. Januar 2010, 23:07 Uhr


Inhaltsverzeichnis

 [Verbergen

Angabe

Eilif Peterssen- Sevilosen.jpg

Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorherzusagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar fa mit f(t) = \frac{1}{4} t^3 - a t^2 + a^2 t, a > 0

Die Funktion gibt dabei die Durchflussgeschwindigkeit in 106\frac{m^3}{Monat} und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage

(t = 0) an. Die Funktion berücksichtigt, dass es sich um einen Fluss handelt, der zeitweise austrocknet.


Aufgabe: Nullstellen

Es soll bestimmt werden, abhängig vom Parameter a, zu welchen Monaten kein Wasser durch den Fluss fließt.

Es sind die Zeitpunkte gesucht, an denen der y - Wert Kubikmeter in Millionen gleich Null ist. An dieser Nullstelle fließt also kein Wasser durch den Fluss. Folglich ist fa (t) = 0 zu setzen.

Was fällt auf, wenn man mit Hilfe des Schiebereglers den Parameter a verändert?
[Lösung anzeigen]

Aufgabe: Extremwerte

Dry river bed in Scotland.jpg

Es soll, in Abhängigkeit von a, ermittelt werden, zu welchen Zeitpunkten t ein relatives Maximum bzw. Minimum vorliegt. Diese Funktionswerte sollen berechnet werden.

Maxima und Minima sind Punkte auf einer Funktion, die in ihrem im Umkreis die höchsten beziehungsweise tiefsten Punkte auf dem Graphen sind. Um diese Extremwerte einer Funktion zu errechnen, wird die erste Ableitung benötigt.

Die allgemeine Ableitungsregel ist: f (x) = x^n \Rightarrow f'(x) = n * xn-1

Bestimme nun die erste Ableitung der Funktion f(t) = \frac{1}{4} t^3 - a t^2 + a^2 t
[Lösung anzeigen]


Errechne nun die Koordinaten der Extremwerte.


Um die t - Werte der Extremwerte zu erhalten, setzt man die Funktion f '(t) = 0. Da man nun eine quadratischen Gleichung bekommt, kann man, mit Hilfe der "Mitternachtsformel", die beiden Lösungen ausrechnen. Schließlich setzt man die errechneten t - Werte in die Funktion ein und erhält somit die y - Koordinaten der Extremwerte E1 und E2.
[Lösung anzeigen]


Am Schönsten sind die Extremwerte für a = 3 zu errechnen und graphisch zu sehen, da sich die Koordinaten
E_1 ( 6 / 0 ) und E_2 ( 2 / 8 ) ergeben.


Man hat nun die Extremwerte in Abhängigkeit von a ermittelt. Um nun zu prüfen ob es sich bei den Extrema um Maxima oder Minima handelt, kann man hier anhand verschiedener Lösungen vorgehen.


Lösung 1: Krümmungsverhalten an den Extremwerten
Dazu setzt man einfach die t - Koordinate in die zweite Ableitung ein. Wird die zweite Ableitung größer Null ist es ein Minimum und die Funktion ist linksgekrümmt, dass heißt es handelt sich um eine "Linkskurve". Ist die zweite Ableitung hingegen kleiner Null, handelt es sich um eine Rechtskrümmung und um ein Maximum. Wäre die zweite Ableitung gleich Null, handelt es sich bei dem Extremwert um einen Terassenpunkt, dass heißt, dass die Steigung der Funktion keinen Vorzeichenwechsel an dieser Stelle hat.
Gib mit dieser Lösungsmöglichkeit die Art der Extremwerte an.
[Lösung anzeigen]


Lösung 2: h - Methode
Mit Hilfe der h - Methode untersucht man, wie sich der Graph "ein Stückchen links und ein Stückchen rechts" vom Extremwert verhält. Dazu nimmt man die erste Ableitung, setzt einmal f '(2a - h) und einmal f '(2a + h) ein, um das Verhalten von Gf für t < 2a bzw t > 2a zu bestimmen. Ergibt sich hier je ein positiver und ein negativer Wert, weiß man, dass es sich um einen Extremwert handelt. Ist beispielsweise f '(t_1 - h) < 0 und f '(t_1 + h) > 0, dann liegt ein Minimum vor, da links vom Extremwert der Graph fällt, und rechts steigt. Wenn sich zweimal das gleiche Vorzeichen für t < 2a bzw t > 2a ergeben sollte, dann handelt es sich um keinen direkten Extremwert, sondern um einen, wie bereits in Lösung 1 beschriebenen, Terassenpunkt.
Versuche auch, mit Hilfe der h - Methode, die Art der Extrempunkte zu bestimmen.


[Lösung anzeigen]


Lösung 3: Vorzeichentabelle
Man schreibt die Ableitung nicht als Summen, sondern als Produkte. Da mann die Nullstellen der ersten Ableitung kennt, kann man dies machen. Allgemein würde es heißen
f '(t)= \left( x - t_1 \right) * \left( x - t_2 \right),
wobei t1 und t2 die t - Werte des Extrempunktes sind.
Nun stellt man eine Vorzeichentabelle für jeden Faktor auf und erhält durch multiplizieren der Vorzeichen das Monotonieverhalten und dadurch die Arten der Extremwerte.
Zerlege die Ableitung in ein Produkt und verdeutliche mit Hilfe einer Vorzeichentabelle die Art der Extremwerte.
[Lösung anzeigen]

Aufgabe: Wendepunkt

Es soll, in Abhängigkeit von a bestimmt werden, wann die Druchflussgeschwindigkeit besonders stark absinkt. Dieser Wert soll zum Zeitpunkt t berechnet werden.

Hier ist der Punkt gesucht, an dem die Durchflussgeschwindigkeit am stärksten absinkt. Dazu schaut man sich die erste Ableitung näher an, da diese die Steigung eines Graphen Gf zeigt.

Es ist also das Minimum der ersten Ableitung gesucht. Dazu setzt man die Ableitung von f '(t) gleich Null. Die Ableitung der Ableitung ist gleich der zweiten Ableitung der Funktion f (t). An dem erhaltenem Punkt besitzt der Graph Gf den größten negativen Steigungswert. Dieser Punkt heißt Wendepunkt. An ihm ändert der Graph sein Krümmungsverhalten.
Errechne die Koordinaten des Wendepunktes.
[Lösung anzeigen]

Aufgabe: Theoretische Überlegungen zur Funktion

Warum liegt kein Punkt der Funktionsgraphen von fa im Bereich t \ge 0 unterhalb der t - Achse und inwiefern ist dies mit dem zugrunde liegenden Sachverhalt vereinbar.

Begründe dies.
[Lösung anzeigen]


Um das Verhalten eines Graphen, welcher gegen + \infty geht, zu bestimmen, wird statt f (t) \lim_{t\to\infty} f (t) geschrieben. Um nun bei einer Potenzfunktion den Grenzwert zu ermitteln, klammert man die höchste Potenz aus, erhält ein Produkt und kann somit leichter, als bei einer Summe, den Grenzwert bestimmen.
Bestimme das Verhalten von fa für t \rightarrow \infty angegeben werden.
[Lösung anzeigen]
Des Weiteren soll begründet werden, ob die Funktionen auch nach den ersten 8 Monate noch eine sinnvolle Beschreibung der Durchflussgeschwindigkeit liefern, aufgrund des berechneten Grenzwertes in der vorherigen Aufgabe.
[Lösung anzeigen]

Aufgabe: Flächenberechnung einer Funktion

Raulprahovalabreaza.jpg

Ermittle für a = 3, wie viel Liter Wasser in den ersten sechs Monaten durch den Fluss fließen.

Um Auszurechnen, wieviel Kubikliter Wasser durch den Fluss fließen, errechnet man die Fläche unter der Funktion. Dies lässt sich durch die Integralrechnung bestimmen. Einfache, bereits bekannte Flächenberechnungen gibt es bei linearen Funktionen. Um hier die Fläche auszurechnen, die der Graph mit der x - Achse einschließt, nimmt man einfach die gebräuchlichen Flächenformeln, wie die Rechtecksformel oder die Dreiecksformel.
Hier kannst du ein

Integral.jpg

Es wird die Funktion gesucht, deren Ableitung die Funktion fa (t) ist. Gebe diese Funktion an und errechne mit ihr für a = 3, wieviel Liter durch den Fluss geflossen sind.
[Lösung anzeigen]

Aufgabe: Flächengleichheit zweier Funktionen

Betrachte nun zwei unterschiedliche Funktionen fa1 und fa2. Es soll der Zeitpunkt bestimmt werden, zu dem für beide Funktionsannahmen (seit t = 0) genau gleich viel Wasser durch den Fluss geflossen wäre.

Dazu werden zwei Integralfunktionen Fa1 und Fa2 gleichgesetzt und so weit wie möglich nach t aufgelöst.

[Lösung anzeigen]