Funktionen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
<div style="padding:1px;background: #9FB6CD;border:0px groove;">
+
<div style="padding:1px;background: #ABAABF;border:0px groove;">
  
  
<center><table border="0" width="900px" cellpadding=2 cellspacing=2>
+
<center><table border="0" width="1000px" cellpadding=2 cellspacing=2>
  
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
  
=== Teste dein Wissen ===
+
 
 +
== Teste dein Wissen==
 +
Um die folgenden Aufgaben lösen zu können , solltest du mit folgenden Funktionen umgehen können: <br/>
 +
- Lineare Funktionen <br/>
 +
- Quadratische Funktionen <br/>
 +
- Potenzfunktionen/Ganzrationale Funktionen (höheren Grades) <br/>
 +
- Gebrochen-Rationale Funktionen <br/>
 +
- Exponentialfunktionen <br/>
 +
- Trigonometrische Funktionen <br/>
 +
In den Übungen werden die verschiedenen Funktionstypen gemischt.<br/>
 +
<br/>
 +
 
 
1) Ordne Funktionstyp, Funktionsterm und Funktionsgraph passend zu. <br/>
 
1) Ordne Funktionstyp, Funktionsterm und Funktionsgraph passend zu. <br/>
 
<div class="zuordnungs-quiz">
 
<div class="zuordnungs-quiz">

Version vom 1. September 2014, 21:00 Uhr



Teste dein Wissen

Um die folgenden Aufgaben lösen zu können , solltest du mit folgenden Funktionen umgehen können:
- Lineare Funktionen
- Quadratische Funktionen
- Potenzfunktionen/Ganzrationale Funktionen (höheren Grades)
- Gebrochen-Rationale Funktionen
- Exponentialfunktionen
- Trigonometrische Funktionen
In den Übungen werden die verschiedenen Funktionstypen gemischt.

1) Ordne Funktionstyp, Funktionsterm und Funktionsgraph passend zu.

 f_5(x)=0,5x+1
E1010.png
Lineare Funktion
 f_4(x)=0,5x^2+1
D1010.png
Quadratische Funktion
 f_1(x)=x^3+1
A.png
Ganzrationale Funktion
 f_6(x)=\frac {1}{x^2-4}-2
F1010.png
Gebrochen-rationale Funktion
 f_3(x)=-0,2x^4+0,5x^2
C1010.png
Ganzrationale Funktion
f_8(x)=2^x-0,5
H1010.png
Exponentialfunktion
f_7(x)=2\cdot (\frac 1 2)^x
G1010.png
Exponentialfunktion
f_2(x)=0,5sinx+1
B1010.png
Trigonometrische Funktion


Entscheide, ob P(3/-6) auf dem Graphen der Funktion f(x)=3x^2-4x-9 liegt. (Nein, P liegt unterhalb von Gf) (!Nein, P liegt oberhalb von Gf) (!Ja, P liegt auf Gf)

3) Gib den Funktionsterm einer Geraden durch P(1/5) an, die parallel zur Geraden g: y=2x+4 verläuft.

p(x)= 2x+3 ()

4) Kreuze für f(x)= -2x^2+2 die richtige Aussage an: Versuche die Aufgabe durch Überlegen zu lösen; es sind keine Berechnungen nötig (Gf ist weiter als die Normalparabel) (!Gf ist enger als die Normalparabel) (!Gf hat die Form einer Normalparabel) (Gf hat zwei Schnittpunkte mit der x-Achse) (!Gf hat einen Schnittpunkt mit der x-Achse) (!Gf hat keinen Schnittpunkt mit der x-Achse) (!Gf ist punktsymmetrisch bzgl des Ursprungs) (Gf ist achsensymmetrisch bzgl des y-Achse) (!Gf ist nicht symmetrisch) (!Der Grenzwert für x gegen unendlich ist 0) (Der Grenzwert für x gegen unendlich ist unendlich) (!Der Grenzwert für x gegen minus unendlich ist unendlich)


Pluspunkt für eine richtige Antwort:  Syntaxfehler
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Gib das Verhalten der folgenden Funktionen für  x \rightarrow \infty \, und \, x \rightarrow  \infty an.
Gib den Grenzwert als Dezimalzahl an oder verwende "u" für  \infty  und "-u" für   -\infty .

f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^4+2} {-5x^4+1} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^4+2} {-5x^4+1} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac 3 5 x^3  \frac 3 5 x^2 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 3 5 x^3  \frac 3 5 x^2 \qquad \lim_{x \to -\infty}f(x)=
f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to \infty}f(x)=
f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to -\infty}f(x)=

Punkte: 0 / 0


Zurück zur Übersicht