2007 V: Unterschied zwischen den Versionen
K |
K |
||
Zeile 23: | Zeile 23: | ||
− | + | <div align="left"> | |
;Aufgabe 1 | ;Aufgabe 1 | ||
Gegeben ist in einem kartesischen Koordinatensystem des IR<sup>3</sup> die Ebenenschar E<sub>k</sub> : k<sup>2</sup>x<sub>1</sub> + k <sup>2</sup>x<sub>2</sub> - k<sup>2</sup> = 0 , mit k ∈ IR als Scharparameter. | Gegeben ist in einem kartesischen Koordinatensystem des IR<sup>3</sup> die Ebenenschar E<sub>k</sub> : k<sup>2</sup>x<sub>1</sub> + k <sup>2</sup>x<sub>2</sub> - k<sup>2</sup> = 0 , mit k ∈ IR als Scharparameter. | ||
Zeile 106: | Zeile 106: | ||
[[Bild:Aufgabe_2_c.jpg|750px]] | [[Bild:Aufgabe_2_c.jpg|750px]] | ||
}} | }} | ||
+ | </div> | ||
<div align="right"><i>'''5 BE'''</i></div> | <div align="right"><i>'''5 BE'''</i></div> | ||
Version vom 17. Februar 2010, 23:55 Uhr
Gegeben ist in einem kartesischen Koordinatensystem des IR3 die Ebenenschar Ek : k2x1 + k 2x2 - k2 = 0 , mit k ∈ IR als Scharparameter.
a) Ermitteln Sie, für welche Werte von k die Ebene Ek den Punkt P(1|2|-3)und zugleich den Punkt Q(0|1|0) enthält. 4 BE
b) Die beiden Ebenen E2 und E-3 schneiden sich in einer Geraden g. Ermitteln Sie eine Gleichung von g in Parameterform und den Schnittwinkel der beiden Ebenen auf eine Dezimale gerundet. [mögliches Teilergebnis: g: , λ ∈ IR ]
5 BE
4 BE
5 BE
e) Untersuchen Sie, ob die Gerade g aus Teilaufgabe 1b senkrecht auf einer Ebene der Schar Ek steht. 3 BE
Aufgabe 2: Nun ist weiter die Kugel K mit dem Mittelpunkt M(1|2|3) und dem Radius r= 6 gegeben. Die Scharebene E-1 schneidet die Kugel K in einem Kreis ks mit dem Mittelpunkt N und dem Radius rs. a) Berechnen Sie die Koordinaten N und den Radius rs
6 BE
b) Zeigen Sie, dass der Punkt R(3|6|-1) auf dem Schnittkreis ks liegt, und stellen Sie eine Gleichung der Tangentialebene T auf, die die Kugel K im Punkt R berührt.
4 BE
c) Die Ebene E-1 und die Tangentialebene an die Kugel K in allen Punkten des Schnittkreises ks begrenzen einen geraden Kreiskegel. Berechnen Sie das Volumen dieses Kegels. 5 BE
d) Zeigen Sie, dass der Punkt U(3|-2|-1) auf der Kugel K und innerhalb des Kreiskegels liegt. 4 BE
|