2009 II: Unterschied zwischen den Versionen
(layout) |
K |
||
Zeile 12: | Zeile 12: | ||
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=79e69371e73c4c671417483e9427e728 '''Download der Originalaufgaben: Abitur 2009 LK Mathematik Bayern'''] - [[Media:LKM Abi 2009 II lös.doc|Lösungen zum Ausdrucken]]</center> | <center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=79e69371e73c4c671417483e9427e728 '''Download der Originalaufgaben: Abitur 2009 LK Mathematik Bayern'''] - [[Media:LKM Abi 2009 II lös.doc|Lösungen zum Ausdrucken]]</center> | ||
+ | |||
+ | <center>'''Die Lösungen fehlen noch - wer übernimmt das?'''</center> | ||
</td></tr></table></center> | </td></tr></table></center> | ||
</div> | </div> |
Version vom 4. Februar 2010, 20:01 Uhr
|
Gegeben ist die Schar der Funktionen mit a ∈ IR+ und der Definitionsmenge IR . Der Graph von fa wird mit Ga bezeichnet. Die Abbildung zeigt Ga für a = 0,04.
|
Nun werden die in IR definierten Integralfunktionen betrachtet. a) Begründen Sie ohne Ausführung der Integration, dass der Graph von Fa für alle a ∈ IR+ durch den Koordinatenursprung verläuft und dort einen Terrassenpunkt besitzt.
|
Die Gruppe „Die toten Rosen“ gibt ein Konzert. Es beginnt um 20 Uhr, der Einlass wird ab 18 Uhr gewährt. Der Besucherzustrom soll durch eine Funktion g der Form g(x) = k ⋅ fa (x) mit geeignetem a und geeignetem k > 0 modelliert werden. Dabei bedeutet x die seit 18 Uhr vergangene Zeit in Minuten. g(x) gibt die momentane Zunahme der Besucherzahl in Besucher pro Minute an.
b) Berechnen Sie für a = 0,04 und k = 1200 unter Verwendung des in Teilaufgabe 2b ermittelten Terms Fa (x) das Integral und interpretieren Sie das Ergebnis im Anwendungszusammenhang. |