besondere Zahlen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Wie man Primzahlen siebt)
(Wie man Primzahlen siebt)
Zeile 146: Zeile 146:
 
=== Wie man Primzahlen siebt ===
 
=== Wie man Primzahlen siebt ===
  
[[Bild:Erathostenes.jpg]]
+
[[Bild:Erathostenes.jpg|center]]
  
 
Wenn du Schwierigkeiten mit '''Primzahlen''' hast, dann bist du hier genau richtig, denn ein kluger '''alter Grieche''', der '''Erathostenes''' hieß, konnte '''Primzahlen''' aus dem '''Hunderter-Raum''' ''"heraussieben."'' Wie er dass gemacht hat, kann ich dir zeigen und erklären:
 
Wenn du Schwierigkeiten mit '''Primzahlen''' hast, dann bist du hier genau richtig, denn ein kluger '''alter Grieche''', der '''Erathostenes''' hieß, konnte '''Primzahlen''' aus dem '''Hunderter-Raum''' ''"heraussieben."'' Wie er dass gemacht hat, kann ich dir zeigen und erklären:

Version vom 13. März 2008, 13:03 Uhr

zurück: Jahr der Mathematik


Inhaltsverzeichnis

Palindromzahlen

1. Beispiel

Startzahl                       87  
                       
Die umgedrehte Zahl addieren    78  
                                --  
                       
Die Zahl wieder umdrehen       165  
                             
Dann wieder addieren           561  
                               ---  
                            
Das Ergebnis umdrehen         1353  
                       
Wieder addieren               3531  
                              ----  
 Die Palindromzahl lautet         4884  
Die Zahl 4884 ist eine Palindromzahl,weil man sie nicht mehr umdrehen kann.

2.Beispiel

Startzahl                       14  
                       
Die Zahl addieren               41  
                                --  
 Das Palindrom lautet           55
 Hier kommt das Palidrom schon bei der ersten Rechnung,weil man 55 nicht mehr umdrehen kann.

Alle Palindromzahlen von 11 bis 9999

Es gibt neun zweistellige Palindromzahlen:

11, 22, 33, 44, 55, 66, 77, 88, 99.

Es gibt 90 dreistellige Palindromzahlen:

101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999.

Und es gibt auch 90 vierstellige Palindromzahlen:

1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999


Die Palidrom-Geschichte

Wann wurden die Palidrome erfunden Palidrome stammen aus den 79 n Chr Was bedeutet Palidrom Palidrom ist ein Lateinisches Wort es bedeutet Sator Arepo Tenet Opera Rotas

wurde als ein Graffito in Herculaneum, von Asche begraben in diesem Jahr. Das Palindrom ist bemerkenswert für die Tatsache, dass sie auch selbst reproduziert, wenn man ein Wort aus dem ersten Buchstaben, dann den zweiten Buchstaben und so weiter. Damit dies möglich ist, in einem Wort, liest Quadrat in acht verschiedene Möglichkeiten: horizontal oder vertikal von oben links nach unten rechts, horizontal oder vertikal von unten rechts nach oben links, horizontal oder vertikal von oben rechts nach unten links und horizonally oder vertikal Von unten links nach oben rechts.

Während einige dieser Quellen zu übersetzen als "Die Säerin Arepo hält die Räder bei der Arbeit", die Übersetzung ist problematisch, da das Wort ansonsten arepo ist unbekannt; dem Platz wurde ein codiertes Christian Signifikant, mit TENET ein Kreuz bilden. Für die weitere Diskussion, siehe separaten Artikel.

Die Kreiszahl Pi

Pi ist eine mathematische Zahl(3,1415927...). Sie wird für viele Formeln verwendet. Ein Beispiel dafür ist die Flächenberechnung eines Kreises.
Datei:Pi-Bild3.jpg
Dieses Zeichen steht für die Zahl PI
>Durchmesser Um einen Kreis zu berechnen misst man als erstes den Durchmesser des Kreises(d).

Dann nimmt man die Zahl mit sich selber mal(d im Quadrat,d2).Danach nimmt man es mal Pi und teilt es durch vier(siehe Formel).


Das fasziniert mich an Pi

Pi ist eine unendliche Zahl!Wieviele Kommastellen hat Pi, welche die Menschheit kennt? Antwort: Seit September 1999 kennt man schon 206 Milliarden Nachkommastellen dieser Zahl.

Was ist die letzte Zahl von Pi? Antwort:Pi ist eine irrationale unendliche Zahl, hat daher keine letzte Zahl, da sie ja unendlich ist.

Pi im Alltag

Wo kommt Pi im Alltag vor? Antwort:z.B bei meinem Fahrradtacho(zum Berechnen der Geschwindigkeit)


Die Fibonacci-Folge

Fibonacci-Folge 200.png

Anfangszahl: 0 und 1

Die darauf folgenden Zahlen ergeben sich aus denn davor stehenden Zahlen. Aber nicht alle Zahlen werden zusammen gezählt, sondern nur die letzten zwei Zahlen. So ergibt sich eine endlose Zahlenreihe.

Bsp: 0,1,1,2,3,5,8,13,21,34,55,89...und wie geht es weiter? 142,231,373,604

Also wird , bei den Startzahlen 0 und 1, einfach die 0 und die 1 addiert und das Ergebnis ist 1. Dann zählt man 1 und 1 zusammen und erhält 2. Jetzt muß man 1 und 2 addieren. Diesmal kommt 3 raus. Wenn man jetzt weitermacht, kommt als nächstes heraus: 5,8,13,21,34,55,89,...







Die römischen Zahlen

Lösung durch Markieren des grauen Feldes sichtbar machen!

1
5
C
L
100
10
I
CXI
X
XXII
50
XVI
111
L
22
16


Die Primzahlen

von René Appel

Was sind Primzahlen ?

Primzahlen sind Zahlen, die nur durch Eins und sich selbst teilbar sind. Also T(a)={1;a}

Verstanden? Ja,na dann kannst Du mir sicher sagen, ob diese Zahlen auch Primzahlen sind. Wenn du wissen willst, was die richtige Lösung ist, markiere das farbige Feld.

89 ist eine Primzahl.

21 ist keine Primzahl.

53 ist eine Primzahl.

Eine besondere Primzahl ist die Zwei, da sie die einzige gerade Primzahl ist.

Wie man Primzahlen siebt

Erathostenes.jpg

Wenn du Schwierigkeiten mit Primzahlen hast, dann bist du hier genau richtig, denn ein kluger alter Grieche, der Erathostenes hieß, konnte Primzahlen aus dem Hunderter-Raum "heraussieben." Wie er dass gemacht hat, kann ich dir zeigen und erklären:


Am besten lässt sich dass zeigen mit einer Hunderter-Tabelle.

1.

Zuerst musst du die Zahlen, die durch zwei teilbar sind markieren. Dabei musst du beachten, dass die zwei sowie alle anderen Zahlen, durch die du teilst, hier eine Sonderzahl ist.

2.

Nun markierst du auch die durch drei teilbaren Zahlen und gehst genauso wie bei Schritt 1 vor.

3.

Du machst dasselbe wie bei den vorherigen Schritten auch bei den Zahlen aus der Vielfachenmenge von fünf(1) und sieben(2).

Alle nun nicht markierten Zahlen sind Primzahlen.

Wenn du Alles richtig gemacht hast, dann müsstest du 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 und 97 rausgesiebt haben. Aber Vorsicht! Die 1 selbst ist keine Primzahl!

So funktioniert das Sieb des Erathostenes.

Die zehn Ziffern

Alle Ziffern im Überblick

Datei:Larissa Oppermann 1.jpg Datei:Larissa Oppermann2.jpg Datei:Zahl drei 100px.jpg Datei:Larissa Oppermann 4.jpg Datei:Larissa Oppermann 5b.jpg Datei:Larissa Oppermann 6.jpg Datei:Larissa Oppermann 7.jpg Datei:Larissa Oppermann 8.jpg Datei:Larissa Oppermann 9.jpg Datei:Larissa Oppermann 0.jpg

Zahlen-Steckbriefe

Geheimnisvolle Fremde Datei:Larissa Oppermann 1.jpg

Zahl: 1/eins

Alter: leider unbekannt

Spitzname: leider unbekannt

Lieblingsb.: geheimnisvoll sein

Besonderheit: komische Kleider

Zur Zahl: die Zahl eins ist eine besondere Zahl beim Multiplizieren...


Clown Datei:Larissa Oppermann2.jpg

Zahl: 2/zwei

Alter: 22 Jahre

Spitzname: Funny

Lieblingsb.: lustig sein

Besonderheit: rote Haare, rote Nase (reicht das?!)

Zur Zahl: die Zahl zwei ist die kleinste Primzahl und die erste gerade Zahl,...


Prinzessin Datei:Zahl drei 100px.jpg

Zahl: 3/drei

Alter: sagt sie nicht (zu eitel)

Spitzname: Prinzesschen

Lieblingsb.: schminken, hübsch sein, herumkommandieren

Besonderheit: "großzügig" geschminkt

Zur Zahl: die Zahl drei ist die zweitkleinste Primzahl...


Professor Datei:Larissa Oppermann 4.jpg

Zahl: 4/vier

Alter: (ich schätze mal) über vierzig Jahre

Spitzname: Schlaubi

Lieblingsb.: experimentieren, Krawatten tragen

Besonderheit: hochstehende Haare (weil manchmal was in die Luft geht)

Zur Zahl: die Zahl vier ist die kleinste Quadratzahl...


Pirat Datei:Larissa Oppermann 5b.jpg

Zahl: 5/fünf

Alter: sagt er mir nicht

Spitzname: Einaugenkopf (bitte nicht ihm sagen, hab ich mir ausgedacht!)

Lieblingsb.: andere Zahlen - auch den König - ausrauben

Besonderheit: ein Auge, kaputte Klamotten

Zur Zahl: die Zahl fünf ist die drittkleinste Primzahl...


Künstler Datei:Larissa Oppermann 6.jpg

Zahl: 6/sechs

Alter: 36 Jahre

Spitzname: Klecksi

Lieblingsb.: malen, zeichnen

Besonderheit: Kleckse auf dem Malerkittel

Zur Zahl:


König Datei:Larissa Oppermann 7.jpg

Zahl: 7/sieben

Alter: 70 Jahre

Spitzname: Mr. King oder auch Thronhocker

Lieblingsb.: auf seinem Thron "hocken", regieren

Besonderheit: wahrscheinlich größte Krone der Welt

Zur Zahl:


Zauberer Datei:Larissa Oppermann 8.jpg

Zahl: 8/acht

Alter: darf ich nicht sagen (sonst verwandelt er mich in eine Giraffe...)

Spitzname: Hokus-Pokus

Lieblingsb.: in Giraffen verwandeln

Besonderheit: spitzer Zauberhut

Zur Zahl:


Vampir Datei:Larissa Oppermann 9.jpg

Zahl: 9/neun

Alter: bestimmt schon sehr alt!?!

Spitzname:Dracula

Lieblingsb.: (was wohl!?)

Besonderheit: auffällig schwarzer Mantel

Zur Zahl:


Blumenmädchen Datei:Larissa Oppermann 0.jpg

Zahl: 0/null

Alter: 10 Jahre

Spitzname: Blümchen

Lieblingsb.: Blumen verteilen

Besonderheit: immer als Blume verkleidet

Zur Zahl:


So, jetzt kennt ihr die Zahlen und alles was sie betrifft. Habt ihr Spaß gehabt? Hoffentlich