|
|
Zeile 147: |
Zeile 147: |
| Der Graph von g mit '''g(x)=f(-x)''' geht aus dem Graphen von f durch eine '''Spiegelung an der y-Achse''' hervor. <br /> <br /> | | Der Graph von g mit '''g(x)=f(-x)''' geht aus dem Graphen von f durch eine '''Spiegelung an der y-Achse''' hervor. <br /> <br /> |
| | | |
− | ''' Hinweis:''' Bei einer Streckung beispielsweise um den Streckungsfaktor k=-2 entsteht der Graph von g aus einer Spiegelung an der x-Achse und <br /> | + | ''' Hinweis:''' Bei einer Streckung beispielsweise um den Streckungsfaktor k=-2 entsteht der Graph von g aus einer Spiegelung an der x-Achse und anschließender Streckung um den Streckungsfaktor 2.</div> <br /> <br /> |
− | :anschließender Streckung um den Streckungsfaktor 2.</div> <br /> <br />
| + | |
| |} | | |} |
| + | |
| + | Wie sich der Graph einer Funktion verhält, wenn er an der x-Achse gespiegelt und dann in y-Richtung gestreckt wird, kannst du im untenstehenden Applet beobachten. <br /> <br /> |
| + | |
| + | <ggb_applet width="810" height="484" version="3.2" ggbBase64="UEsDBBQACAAIALN8NTwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1stVZLb9swDD5vv0LQqd1Qx4+kS4G4wx4YMKDbDtkD2GGAbDOOFlkyJLl1+utHSXaSZh3QoVsukkiKIj9+pLN42TeCXIM2XMmcJlFMCchSVVzWOe3s6mxOX14+XdSgaig0IyulG2ZzmkUpdfKOXz59sjBrdUOY8CZfOdzkdMWEAUpMq4FVZg1g78hZ13PBmd5+Kn5Cac1eEZy8l22Hr1jdoaxsqituxuPEP9gKbt/ya16BJkKVOT2fYei4+wra8pKJnE7jIElzmh4pUZQ57VppfqukdeZ75yuUEGL4LSAi5062mPhEF9CVglecSZeMjwONCLnhlV3ndJ44l8DrNcY6nafBW6mUrpZbY6Eh/XfQCt+eZ9EsnV6Mv/k5JdugQml0Ee9/SYogYsQulHgazWYHugxvDbpZFk3jWfIinSbZi4ssCU/D9RKsxVIawnowI5615tXh/r15rUS1K0GruLRvWGs77VmQDaKl3bqnMEftUnwlawGDLMEiraHcFKpfBtiy4PrztvVXfDhF/UYJpYl2BZmhwbAWYfU2Ls6dVextYm8x+HBOd/rkIvUWfi3C6q0ElyG0Ie9sTDqJx2e4IU6Azh15RzgEKwC5QEknub0aD8iZzT5TZ/+xawpsmkPW7Fwm/8jlYnJEt8UGtAQRSCWxrp3qDLl25A2l83FUUPIGj0ExAMJcsb5gAEFaQa1hjDt0XIDLa+ND4h6JF5MxCBeDwVhLi6MD87Eul6XVSINO1phtRZYthxoEHl3HW+y2nL7D2mFG5BsXG0oqZvGWmyTQ46gwbgwFxAgmhbOob3E96U9JTrIoJs9I/+NkGsWn5IxMx3Pqzs+JG14uQhDQAHaw9dxbddJHuCvEit5liF1jKSQ+jT1Lh0sDAn6sKT+hjqq5Lzuq/8BXnGXtmuEuGtwJtsVpdQix9/ZBVXeBZxIL6FHFodE6B44iLUA1TOgxSNKiS9+jB/V/QGbIrIDRb2jJrgHNy12eGw8WBtcNIabRP8YmeSA2g50RfuQ3XAZgScN6HH9uxwqjRGdhWSK35ZUqPYZjcMOMTmJ/y93BIYy7LYLjQV3xHvZD8P4vw73YpkeseUz57lTmqCNyWg8NUYeGODvZnGIHuPag5AHMr/8f88d5/mju/yV7J4dDyH+nhz8ql78AUEsHCLKfAg9jAwAA2ggAAFBLAQIUABQACAAIALN8NTyynwIPYwMAANoIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAnQMAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> |
| | | |
| == <span style="color: blue">Beispielaufgaben</span> == | | == <span style="color: blue">Beispielaufgaben</span> == |
Version vom 21. Januar 2010, 17:10 Uhr
|
Strecken und Spiegeln von Funktionsgraphen
Streckung in y-Richtung
|
Zur Erinnerung:
Bei quadratischen Funktionen haben wir bereits festgestellt, dass der Funktionsgraph durch einen Koeffizienten a weiter oder enger als die Normalparabel
f(x)=x2 sein kann. Diese Erscheinung wird nun allgemein für alle Funktionstypen untersucht.
|
|
Problemstellung:
Im untenstehenden Koordinatensystem ist der Graph der Funktion f(x)= 2x4-3x2+0,5 dargestellt. Wird diese Funktion nun mit einer rationalen Zahl k multipliziert, entsteht ein veränderter Graph g(x). Versuche, durch Verschieben des Reglers das Verhalten des Funktionsgraphen zu erklären.
|
|
Erklärung:
Da der Graph von g(x) aus einer Multiplikation von einem Koeffizienten k und dem Funktionswert von f(x) entsteht, gilt für den Graphen g die Funktionsgleichung g(x)=k×f(x). Dadurch nimmt g bei einem Koeffizienten k>1 einen größeren Funktionswert an als der Graph von f. Der Graph ist also in y-Richtung gestreckt. Dasselbe gilt auch für 0<k<1, nur das der Graph g hier kleinere Funktionswerte annimmt. Die Nullstellen bleiben dabei unverändert!
|
|
Beispiel:
- k=3
- f(1)=-0,5
- g(x)=f(x)
k
- g(1)=f(1)
3
- g(1)=-0,5
3
- g(1)=-1,5
|
Streckung in x-Richtung
Problemstellung:
|
Im nebenstehenden Koordinatensystem ist der Graph der Funktion f(x)=cosx eingezeichnet. Durch eine Streckung in x-Richtung um den Faktor 3 entsteht der Graph g. Wie lautet der Funktionsterm von g?
|
|
Beispiel:
- k=2
- f(
)=-1
- g(x)=f(
x)
- g(
)=f( )
- g(
)=0
|
|
Ist der Streckungsfaktor 0<k<1, z.B. k=0,5, dann entspricht der Funktionswert von f an der Stelle x dem Funktionswert von g an der Stelle 0,5.
Der Zusammenhang lautet also f(x)=g(0,5x) oder g(x)=f(2x). Das Verhalten des Graphen kannst du beobachten, wenn du im oben abgebildeten Koordinatensystem den Regler k verschiebst.
Der Funktionswert an der Stelle x=0 bleibt immer gleich.
Allgemein: g(x)=f(kx) mit dem Streckungsfaktor
|
|
Merke:
Besteht zwischen zwei Funktionen der Zusammenhang g(x)=k×f(x) mit k>0, dann ist der Graph von g gegenüber dem von f in y-Richtung um den Faktor k gestreckt.
Besteht zwischen zwei Funktionen der Zusammenhang g(x)=f(kx) mit k>0, dann ist der Graph von g gegenüber dem von f um den Faktor  in x-Richtung gestreckt.
|
Spiegelung an der x-Achse
Bisher haben wir das Verhalten der Funktionsgraphen nur für positive Werte von k untersucht. Nun soll k den Wert -1 annehmen. Aus den oben erstellten
Formeln ergeben sich nun die Fälle
g(x)= -1k×f(x) und g(x)=f(-1kx), also g(x)= -f(x) und g(x)=f(-x).
Zunächst betrachten wir den Fall g(x)= -f(x).
|
|
|
|
|
Im nebenstehenden Koordinatensystem ist der Graph von f mit dem Funktionsterm f(x)=x4-x2 rot dargestellt. Um die Funktionswerte des grün dargestellten Graphen von g zu erhalten, werden die Funktionswerte von f(x) mit k=-1 multipliziert. Wie in der Abbildung zu erkennen ist, handelt es sich beim Graphen von g um eine Spiegelung an der x-Achse.
|
Spiegelung an der y-Achse
Nun betrachten wir den Fall g(x)=f(-x) am Beispiel f(x)=2x.
|
|
|
|
|
Im nebenstehenden Koordinatensystem ist der Graph von f rot dargestellt. Für den Graphen von g (grün dargestellt) gilt der Funktionsterm g(x)=2-x. Betrachtet man die beiden Graphen zusammen, so fällt auf, dass der Graph von g aus einer Spiegelung von f an der y-Achse entsteht.
|
Merke:
Der Graph von g mit g(x)= -f(x) geht aus dem Graphen von f durch eine Spiegelung an der x-Achse hervor.
Der Graph von g mit g(x)=f(-x) geht aus dem Graphen von f durch eine Spiegelung an der y-Achse hervor.
Hinweis: Bei einer Streckung beispielsweise um den Streckungsfaktor k=-2 entsteht der Graph von g aus einer Spiegelung an der x-Achse und anschließender Streckung um den Streckungsfaktor 2.
Wie sich der Graph einer Funktion verhält, wenn er an der x-Achse gespiegelt und dann in y-Richtung gestreckt wird, kannst du im untenstehenden Applet beobachten.
Beispielaufgaben
Aufgabe 1:
Zeichne in ein gemeinsames Koordinatensystem die Funktion f(x)=x3+2, sowie die Funktionen g(x)=2f(x) und h(x)=f(2x).
Aufgabe 2:
Gegeben ist die Funktion f(x)=2x3-x2+2x+1. Erstelle jeweils die neuen Funktionen nach den folgenden Anweisungen. Verwende zum Weiterrechnen jeweils den vorangegangenen Funktionsterm.
- a) Streckung um den Faktor 3 in y-Richtung
- b) Spiegelung an der x-Achse
- c) Streckung um den Faktor 0,5 in x-Richtung
- d) Streckung um den Faktor 0,25 in y-Richtung
- e) Spiegelung an der y-Achse
Aufgabe 3:
Finde die passenden Paare.
|
Weiter zum Kapitel Symmetrie von Funktionsgraphen
Zurück zur Übersicht